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Foreword

In the past, the Springer Series in Synergetics has consisted predominantly of
conference proceedings on this new interdisciplinary field, a circumstance dictat-
ed by its rapid grawth. As synergetics matures, it becomes more and more desir-
able to present the relevant experimental and theoretical results in a coherent
fashion and to provide students and research workers with fundamental “know-
how” by means of texts and monographs.

From the very beginning, we have stressed that the formation of spatial,
temporal, or functional structures by complex systems can be adequately dealt
with only if stochastic processes are properly taken into account. For this reason,
I gave an introduction to these processes in my book Synergetics. An Introduc-
tion, Volume 1 of this series. But research workers and students wanting to
penetrate the theory of these processes more deeply were quite clearly in need of a
far more comprehensive text. This gap has been filled by the present book by
Professor Crispin Gardiner. It provides a solid basis for forthcoming volumes in
the series which draw heavily on the methods and concepts of stochastic pro-
cesses. These include Noise-Induced Transitions, by W. Horsthemke and R.
Lefever, The Kinetic Theory of Electromagnetic Processes, by Y. L. Klimonto-
vich, and Concepts and Models of a Quantitative Sociology, by W. Weidlich and
G. Haag.

Though synergetics provides us with rather general concepts, it is by no
means “art pour ’art”. On the contrary, the processes it deals with are of funda-
mental importance in self-organizing systems such as those of biology, and in the
construction of devices, e.g., in electronics. Therefore I am particularly pleased
that the present book has been written by a scientist who has himself applied —
and even developed — such methods in the theory of random processes, for ex-
ample in the fields of quantum optics and chemical reactions. Professor
Gardiner’s book will prove most useful not only to students and scientists work-
ing in synergetics, but also to a much wider audience interested in the theory of
random processes and its important applications to a variety of fields.

H. Haken



Preface to the Corrected Printing

Since I started writing this book ten years ago, a great deal has happened. I have been
gratified to find how popular my exposition has become, and of course continually
bemused that errors still come to light. I am very grateful to all those who have
pointed them out to me, in particular to Matthew Collett, Scott Parkins, and Andrew
Smith, who, as students and colleagues, over the last five years have kept me aware
of everything they noticed. As well, I must also thank Prof. Urbaan Titulaer and Mr.
Alexander Kainz, of the Johannes Kepler University of Linz, who sent me a very full
and careful list of corrections.

As a consequence a number of corrections have been made in this second printing
of the second edition. The most significant of these is the removal of the converse
result of Sect. 3.7.3b, which was incorrectly derived, and which is probably not true.

At this time I must also express my thanks to my wife Helen May and my youngest
daughter Nell, who have been of such support in the years since this book was written.

Pasadena, California C. W. Gardiner
October 1989



Preface to the Second Edition

In this edition I have corrected a number of misprints, and made a few altera-
tions of a more substantial kind. In particular, I have rewritten Sections 4.2.3
and 4.3.6, using a more correct definition of the Stratonovich stochastic integral;
I have clarified a slightly confusing exposition on boundaries in Section 5.2.1¢;
and I have rewritten Sections 6.3.3 and 6.4.4¢ to take account of recent progress
in these fields. I have also slightly augmented the bibliography and references.

Pasadena, California C. W. Gardiner
March 1985



Preface to the First Edition

My intention in writing this book was to put down in relatively simple language
and in a reasonably deductive form, all those formulae and methods which have
been scattered throughout the scientific literature on stochastic methods through-
out the eighty years that they have been in use. This might seem an unnecessary
aim since there are scores of books entitled “Stochastic Processes”, and similar
titles, but careful perusal of these soon shows that their aim does not coincide
with mine. There are purely theoretical and highly mathematical books, there are
books related to electrical engineering or communication theory, and there are
books for biologists — many of them very good, but none of them covering the
kind of applications that appear nowadays so frequently in Statistical Physics,
Physical Chemistry, Quantum Optics and Electronics, and a host of other
theoretical subjects that form part of the subject area of Synergetics, to which
series this book belongs.

The main new point of view here is the amount of space which deals with
methods of approximating probtems, or transforming them for the purpose of
approximating them. I am fully aware that many workers will not see their meth-
ods here. But my criterion here has been whether an approximation is systematic.
Many approximations are based on unjustifiable or uncontrollable assumptions,
and are justified a posteriori. Such approximations are not the subject of a
systematic book — at least, not until they are properly formulated, and their
range of validity controlled. In some cases I have been able to put certain
approximations on a systematic basis, and they appear here — in other cases I
have not. Others have been excluded on the grounds of space and time, and
I presume there will even be some that have simply escaped my attention.

A word on the background assumed. The reader must have a good knowledge
of practical calculus including contour integration, matrix algebra, differential
equations, both ordinary and partial, at the level expected of a first degree in
applied mathematics, physics or theoretical chemistry. This is not a text book for
a particular course, though it includes matter that has been used in the University
of Waikato in a graduate course in physics. It contains material which [ would
expect any student completing a doctorate in our quantum optics and stochastic
processes theory group to be familiar with. There is thus a certain bias towards
my own interests, which is the prerogative of an author.

I expect the readership to consist mainly of theoretical physicists and
chemists, and thus the general standard is that of these people. This is not a rigor-
ous book in the mathematical sense, but it contains results, all of which I am con-
fident are provable rigorously, and whose proofs can be developed out of the
demonstrations given.



Preface to the First Edition X

The organisation of the book is as in the following table, and might raise some
eyebrows. For, after introducing the general properties of Markov processes, I
have chosen to base the treatment on the conceptually difficult but intuitively
appealing concept of the stochastic differential equation. I do this because of my
own experience of the simplicity of stochastic differential equation methods, once
one has become familiar with the Ito calculus, which I have presented in Chapter 4
in a rather straightforward manner, such as [ have not seen in any previous text. It
is true that there is nothing in a stochastic differential equation that is not in a
Fokker-Planck equation, but the stochastic differential equation is so much easier
to write down and manipulate that only an excessively zealous purist would try to
eschew the technique. On the other hand, only similar purists of an opposing camp
would try to develop the theory without the Fokker-Planck equation, so Chapter 5
introduces this as a complementary and sometimes overlapping method of
handling the same problem. Chapter 6 completes what may be regarded as the
“central core” of the book with a treatment of the two main analytical approxima-
tion techniques: small noise expansions and adiabatic elimination.

The remainder of the book is built around this core, since very many methods
of treating the jump processes in Chapter 7 and the spatially distributed systems,
themselves best treated as jump processes, depend on reducing the system to an
approximating diffusion process. Thus, although logically the concept of a jump
process is much simpler than that of a diffusion process, analytically, and in
terms of computational methods, the reverse is true.

Chapter 9 is included because of the practical importance of bistability and,
as indicated, it is almost independent of all but the first five chapters. Again, I
have included only systematic methods, for there is a host of ad hoc methods in
this field.

Chapter 10 requires some knowledge of quantum mechanics. I hope it will be
of interest to mathematicians who study stochastic processes because there is still
much to be done in this field which is of great practical importance and which
naturally introduces new realms in stochastic processes — in particular, the
rather fascinating field of stochastic processes in the complex plane which turn
up as the only way of reducing quantum processes to ordinary stochastic proc-
esses. It is with some disappointment that I have noted a tendency among mathe-
maticians to look the other way when quantum Markov processes are mentioned,
for there is much to be done here. For example, I know of no treatment of escape
problems in quantum Markov systems.

It is as well to give some idea of what is not here. I deal entirely with Markov
processes, or systems that can be embedded in Markov processes. This means
that no work on non-linear Markovian stochastic differential equations has been
included, which I regret. However, van Kampen has covered this field rather
well, and it is now well covered in his book on stochastic processes.

Other subjects have been omitted because I feel that they are not yet ready for
a definitive formulation. For example, the theory of adiabatic elimination in
spatially distributed systems, the theory of fluctuating hydrodynamics, renor-
malisation group methods in stochastic differential equations, and associated
critical phenomena. There is a great body of literature on all of these, and a

v e
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Preface to the First Edition XI

Further, for the sake of compactness and simplicity I have normally present-
ed only one way of formulating certain methods. For example, there are several
different ways of formulating the adiabatic elimination results, though few have
been used in this context. My formulation of quantum Markov processes and the
use of P-representations is only one of many. To have given a survey of all
formulations would have required an enormous and almost unreadable book.
However, where appropriate I have included specific references, and further
relevant matter can be found in the general bibliography.

Hamilton, New Zealand C. W. Gardiner
January, 1983
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1. A Historical Introduction

1.1 Motivation

Theoretical sciente up to the end of the nineteenth century can be viewed as the
study of solutions of differential equations and the modelling of natural phenomen:
by deterministic solutions of these differential equations. It was at that time
commonly thought that if all initial data could only be collected, one would bc
able to predict the future with certainty.

We now know this is not so, in at least two ways. Firstly, the advent of quantun
mechanics within a quarter of a century gave rise to a new physics, and hence :
new theoretical basis for all science, which had as an essential basis a purels
statistical element. Secondly, more recently, the concept of chaos has arisen, i
which even quite simple differential equation systems have the rather alarmin;
property of giving rise to essentially unpredictable behaviour. To be sure, one cai
predict the future of such a system given its initial conditions, but any error in the
initial conditions is so rapidly magnified that no practical predictability is left
In fact, the existence of chaos is really not surprising, since it agrees with more o
our everyday experience than does pure predictability—but it is surprising perhap
that it has taken so long for the point to be made.

Number of molecules
g
T

g

n

0 2 ry 3 ) 0 12 14 16 18 20

Fig. 1.1. Stochastic simulation of an isomerisation reaction X — A4
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Chaos and quantum mechanics are not the subject of this chapter. Here I wish
to give a semihistorical outline of how a phenomenological theory of fluctuating
phenomena arose and what its essential points are. The very usefulness of predic-
table models indicates that life is not entirely chaos. But there is a limit to predic-
tability, and what we shall be most concerned with in this book are models of
limited predictability. The experience of careful measurements in science normally
gives us data like that of Fig. 1.1, representing the growth of the number of mole-
cules of a substance X formed by a chemical reaction of the form X = 4. A quite
well defined deterministic motion is evident, and this is reproducible, unlike the
fluctuations around this motion, which are not.

1.2 Some Historical Examples

1.2.1 Brownian Motion

The observation that, when suspended in water, small pollen grains are found to
be in a very animated and irregular state of motion, was first systematically
investigated by Robert Brown in 1827, and the observed phenomenon took the
name Brownian Motion because of his fundamental pioneering work. Brown was
a botanist—indeed a very famous botanist—and of course tested whether this
motion was in some way a manifestation of life. By showing that the motion was
present in any suspension of fine particles—glass, minerals and even a fragment of
the sphinx—he ruled out any specifically organic origin of this motion. The motion
is illustrated in Fig. 1.2.

Fig. 1.2. Motion of a point undergoing Brownian
motion

The riddle of Brownian motion was not quickly solved, and a satisfactory
explanation did not come until 1905, when Einstein published an explanation under
the rather modest title “iiber die von der molekular-kinetischen Theorie der
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Wirme geforderte Bewegung von in ruhenden Fliissigkeiten suspendierten Teil-
chen” (concerning the motion, as required by the molecular-kinetic theory of heat,
of particles suspended in liquids at rest) [1.2]. The same explanation was indepen-
dently developed by Smoluchowski[1.3], who was responsible for much of the later
systematic development and for much of the experimental verification of Brownian
motion theory.

There were two major points in Einstein’s solution to the problem of Brownian
motion.

(i) The motion is caused by the exceedingly frequent impacts on the pollen grain of
the incessantly moving molecules of liquid in which it is suspended.

(ii) The motion pf these molecules is so complicated that its effect on the pollen
grain can only be described probabilistically in terms of exceedingly frequent
statistically independent impacts.

The existence of fluctuations like these ones calls out for a statistical explanation
of this kind of phenomenon. Statistics had already been used by Maxwell and
Boltzmann in their famous gas theories, but only as a description of possible states
and the likelihood of their achievement and not as-an intrinsic part of the time
evolution of the system. Rayleigh [1.1] was in fact the first to consider a statistical
description in this context, but for one reason or another, very little arose out of
his work. For practical purposes, Einstein’s explanation of the nature of Brownian
motion must be regarded as the beginning of stochastic modelling of natural
phenomena.

Einstein’s reasoning is very clear and elegant. It contains all the basic concepts
which will make up the subject matter of this book. Rather than paraphrase a classic
piece of work, I shall simply give an extended excerpt from Einstein’s paper (author’s
translation):

“It must clearly be assumed that each individual particle executes a motion
which is independent of the motions of all other particles; it will also be considered
that the movements of one and the same particle in different time intervals are
independent processes, as long as these time intervals are not chosen too small

“We introduce a time interval 7 into consideration, which is very small com-
pared to the observable time intervals, but nevertheless so large that in two succes-
sive time intervals 7, the motions executed by the particle can be thought of as
events which are independent of each other.

“Now let there be a total of n particles suspended in a liquid. In a time interva
7, the X-coordinates of the individual particles will increase by an amount 4, where
for each particle 4 has a different (positive or negative) value. There will be s
certain frequency law for 4; the number dn of the particles which experience ¢
shift which is between 4 and 4 + d4 will be expressible by an equation of the formr

dn = ng(4)d4, (1.2.1

where

°I° ¢(4)d4 =1 (1.2.2
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and ¢ is only different from zero for very small values of 4, and satisifes the condi-
tion

#(4) = g(—4). (1.2.3)

“We now investigate how the diffusion coefficient depends on ¢. We shall once
more restrict ourselves to the case where the number v of particles per unit volume
depends only on x and ¢.

“Let v = f(x, t) be the number of particles per unit volume. We compute the
distribution of particles at the time ¢ + 7 from the distribution at time ¢. From the
definition of the function g(d), it is easy to find the number of particles which at
time ¢ 4 7 are found between two planes perpendicular to the x-axis and passing
through points x and x 4+ dx. One obtains

f0, 1+ T)dx = dx | fix + 4, §(d)dd . (1.2.4)

But since 7 is very small, we can set

Jx 1+ =1x 1)+ 15 f (1.2.5)
Furthermore, we develop f(x 4+ 4, t) in powers of 4:
fx+4,t)=f(x,t)+ 4 af(axx G (699 + e (1.2.6)

2' 0x?

’

We can use this series under the integral, because only small values of 4 contribute
to this equation. We obtain

f+ —f 1=f j #(4)d4 + 55 sT7 j 44(4)d4 + 35 azf j ¢(A)dA (1.2.7)

Because ¢(x) = 4(—x), the second, fourth, etc., terms on the right-hand side vanish,
while out of the Ist, 3rd, Sth, etc., terms, each one is very small compared with the
previous. We obtain from this equation, by taking into consideration

T $(d)dd = 1 (1.2.8)
and setting

1 % 4
— | 5 $(4)dd =D, (1.2.9)

—co

and keeping only the Ist and third terms of the right-hand side,

2
o _ Y. 1210
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This is already known as the differential equation of diffusion and it can be seen that
D is the diffusion coefficient. ...

“The problem, which corresponds to the problem of diffusion from a single
point (neglecting the interaction between the diffusing particles), is now com-
pletely determined mathematically: its solution is

for 1) = =t (1.2.11)

“We now calculate, with the help of this equation, the displacement A, in the
direction of the X-axis that a particle experiences on the average or, more exactly,
the square root of the arithmetic mean of the square of the displacement in the
direction of the X-;xis; it is

A = /%= ~/2D1.” (1.2.12)

Einstein’s derivation is really based on a discrete time assumption, that impacts
happen only at times 0, 7, 27, 37 ..., and his resulting equation (1.2.10) for the
distribution function f(x, t) and its solution (1.2.11) are to be regarded as approxi-
mations, in which 7 is considered so small that # may be considered as being
continuous. Nevertheless, his description contains very many of the major concepts
which have been developed more and more generally and rigorously since then,
and which will be central to this book. For example:

i) The Chapman-Kolmogorov Equation occurs as Einstein’s equation (1.2.4). It
states that the probability of the particle being at point x at time ¢ + 7 is given by
the sum of the probability of all possible “pushes’” 4 from positions x + 4, multi-
plied by the probability of being at x 4+ 4 at time ¢. This assumption is based on
the independence of the push 4 of any previous history of the motion: it is only
necessary to know the initial position of the particle at time +—not at any previous
time. This is the Markov postulate and the Chapman Kolmogorov equation, of
which (1.2.4) is a special form, is the central dynamical equation to all Markov
processes. These will be studied in detail in Chap. 3.

ii) The Fokker-Planck Equation: Eq. (1.2.10) is the diffusion equation, a special case
of the Fokker-Planck equation, which describes a large class of very interesting
stochastic processes in which the system has a continuous sample path. In this case,
that means that the pollen grain’s position, if thought of as obeying a probabilistic
law given by solving the diffusion equation (1.2.10), in which time ¢ is continuous
(not discrete, as assumed by Einstein), can be written x(¢), where x(¢) is a continuous
Sfunction of time-but a random function. This leads us to consider the possibility of
describing the dynamics of the system in some direct probabilistic way, so that we
would have a random or stochastic differential equation for the path. This procedure
was initiated by Langevin with the famous equation that to this day bears his name.
We will discuss this in detail in Chap. 4.

iii) The Kramers-Moyal and similar expansions are essentially the same as that
used by Einstein to go from (1.2.4) (the Chapman-Kolmogorov equation) to the
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diffusion equation (1.2.10). The use of this type of approximation, which effectively
replaces a process whose sample paths need not be continuous with one whose
paths are continuous, has been a topic of discussion in the last decade. Its use
and validity will be discussed in Chap. 7.

1.2.2 Langevin’s Equation

Some time after Einstein’s original derivation, Langevin [1.4] presented a new
method which was quite different from Einstein’s and, according to him, “infinitely
more simple.” His reasoning was as follows.

From statistical mechanics, it was known that the mean kinetic energy of the
Brownian particle should, in equilibrium, reach a value

Gmv?y = kT (1.2.13)

(T; absolute temperature, k ; Boltzmann’s constant). (Both Einstein and Smolucho-
wski had used this fact). Acting on the particle, of mass m there should be two
forces:

i) a viscous drag: assuming this is given by the same formula as in macroscopic
hydrodynamics, this is —6nna dx/dt, n being the viscosity and a the diameter of
the particle, assumed spherical.

ii) another fluctuating force X which represents the incessant impacts of the
molecules of the liquid on the Bréwnian particle. All that is known about it is that
fact, and that it should be positive and negative with equal probability. Thus, the
equation of motion for the position of the particle is given by Newton’s law as

d*x dx
mos = —6m7a2t—+ X (1.2.14)

and multiplying by x, this can be written

m d* d(x)

> dtz(xz) — mvt = —3nna —— + Xx, (1.2.15)

where v = dx/dt. We now average over a large number of different particles and use
(1.2.13) to obtain an equation for {x2):

m d*{(x*)
2 dr?

2
+ 3nya d—<d’—;—> — kT, (1.2.16)

where the term (xX) has been set equal to zero because (to quote Langevin) “of
the irregularity of the quantity X”’. One then finds the general solution

d<" 2 — kT/(3rna) + C exp (—6mnatm), (1.2.17)
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where C is an arbitrary constant. Langevin estimated that the decaying exponential
approaches zero with a time constant of the order of 1078 s, which for any practical
observation at that time, was essentially immediately. Thus, for practical purposes,
we can neglect this term and integrate once more to get

Xy — (xgy = [kT[(3nna)]t . (1.2.18)
This corresponds to (1.2.12) as deduced by Einstein, provided we identify
D = kT/(6nna) , (1.2.19)

a result which Einstein derived in the same paper but by independent means.

Langevin’s eqdation was the first example of the stochastic differential equation—
a differential equation with a random term X and hence whose solution is, in some
sense, a random function. Each solution of Langevin’s equation represents a
different random trajectory and, using only rather simple properties of X (his
fluctuating force), measurable results can be derived.

One question arises: Einstein explicitly required that (on a sufficiently large time
scale) the change 4 be completely independent of the preceding value of 4. Lange-
vin did not mention such a concept explicitly, but it is there, implicitly, when one
sets (Xx) equal to zero. The concept that X is extremely irregular and (which is not
mentioned by Langevin, but is implicit) that X and x are independent of each
other—that the irregularities in x as a function of time, do not somehow conspire
to be always in the same direction as those of X, so that the product could possibly
not be set equal to zero; these are really equivalent to Einstein’s independence
assumption. The method of Langevin equations is clearly very much more direct,
at least at first glance, and gives a very natural way of generalising a dynamical
equation to a probabilistic equation. An adequate mathematical grounding for
the approach of Langevin, however, was not available until more than 40 years
later, when Ito formulated his concepts of stochastic differential equations. And
in this formulation, a precise statement of the independence of X and x led to the
calculus of stochastic differentials, which now bears his name_ and which will be
fully developed in Chap. 4.

As a physical subject, Brownian motion had its heyday in the first two decades
of this century, when Smoluchowski in particular, and many others carried out
extensive theoretical and experimental investigations, which showed complete agree-
ment with the original formulation of the subject as initiated by himself and
Einstein, see [1.5]. More recently, with the development of laser light scattering
spectroscopy, Brownian motion has become very much more quantitatively
measurable. The technique is to shine intense, coherent laser light into a small
volume of liquid containing Brownian particles, and to study the fluctuations in the
intensity of the scattered light, which are directly related to the motions of the
Brownian particles. By these means it is possible to observe Brownian motion of
much smaller particles than the traditional pollen, and to derive useful data about
the sizes of viruses and macromolecules. With the preparation of more concentrated

suspensions, interactions between the particles appear, generating interesting and
quite complex nroblems related tn macramalacular cncnancinne and axllaids 11 4
[
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The general concept of fluctuations describable by such equations has developed
very extensively in a very wide range of situations. The advantages of a continuous
description turn out to be very significant, since only a very few parameters are
required, i.e., essentially the coefficients of the derivatives in (1.2.7):

[ 44(4)dd, and | 424(4)dd . (1.2.20)

It is rare to find a problem which cannot be specified, in at least some degree of
approximation, by such a system, and for qualitative simple analysis of problems it
is normally quite sufficient to consider an appropriate Fokker-Planck equation, of
a form obtained by allowing both coefficients (1.2.20) to depend on x, and in a space
of an appropriate number of dimensions.

1.3 Birth-Death Processes

A wide variety of phenomena can be modelled by a particular class of process called
a birth-death process. The name obviously stems from the modelling of human or
animal populations in which individuals are born, or die. One of the most entertain-
ing models is that of the prey-predator system consisting of two kinds of animal,
one of which preys on the other, which is itself supplied with an inexhaustible food
supply. Thus letting X symbolise the prey, Y the predator, and 4 the food of the
prey, the process under consideration might be

X+ A4—2X (1.3.1a)
X+ Y—2Y (1.3.1b)
Y—B (1.3.1¢c)

which have the following naive, but charming interpretation. The first equation
symbolises the prey eating one unit of food, and reproducing immediately. The
second equation symbolises a predator consuming a prey (who thereby dies—this
is the only death mechanism considered for the prey) and immediately reproducing.
The final equation symbolises the death of the predator by natural causes. It is easy
to guess model differential equations for x and y, the numbers of X and Y. One
might assume that the first reaction symbolises a rate of production of X propor-
tional to the product of x and the amount of food; the second equation a produc-
tion of Y (and an equal rate of consumption of X)) proportional to xy, and the last
equation a death rate of Y, in which the rate of death of Y is simply proportional to
y; thus we might write

d
i—tf = kax — kyxy (1.3.2a)
Y _ oxy — oy . (1.3.2b)

dt
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The solutions of these equations, which were independently developed by Lotka
[1.7] and Volterra [1.8] have very interesting oscillating solutions, as presented in
Fig. 1.3a. These oscillations are qualitatively easily explicable. In the absence of
significant numbers of predators, the prey population grows rapidly until the
presence of so much prey for the predators to eat stimulates their rapid reproduction,
at the same time reducing the number of prey which get eaten. Because a large
number of prey have been eaten, there are no longer enough to maintain the
population of predators, which then die out, returning us to our initial situation.
The cycles repeat indefinitely and are indeed, at least qualitatively, a feature of
many real prey-predator systems. An example is given in Fig. 1.3b.
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Fig. 1.3a-c. Time development in prey-predator systems. (a) Plot of solutions of the deterministic
equations (1.3.2) (x = solid line, y = dashed line). (b) Data for a real prey-predator system. Here
the predator is a mite (Eotetranychus sexmaculatus—dashed line) which feeds on oranges, and
the prey is another mite (Typhlodromus occidentalis). Data from [1.16, 17]. (¢) Simulation of
stochastic equations (1.3.3)
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Of course, the realistic systems do not follow the solutions of differential
equations exactly—they fluctuate about such curves. One must include these
fluctuations and the simplest way to do this is by means of a birth-death master
equation. We assume a probability distribution, P(x, y, t), for the number of indi-
viduals at a given time and ask for a probabilistic law corresponding to (1.3.2).
This is done by assuming that in an infinitesimal time At¢, the following transition
probability laws holds.

Prob (x — x+1; y — y) = k,axAt, (1.3.3a)
Prob (x — x—1; y — y+1) = k,xyAt, (1.3.3b)
Prob (x — x; y — y—1) = k,yAt, (1.3.3¢)
Prob (x — x; y — y) = 1 —(kiax + k,xy + ksy)At. (1.3.3d)

Thus, we simply, for example, replace the simple rate laws by probability laws.
We then employ what amounts to the same equation as Einstein and others used,
i.e., the Chapman-Kolmogorov equation, namely, we write the probability at
t + At as a sum of terms, each of which represents the probability of a previous
state multiplied by the probability of a transition to the state (x, y). Thus, we
find

P(X,)’yt+Af)—P(X,y,t):

kia(x — DP(x — Ly, 1) + ka(x + D (y — 1)

At
.
X P(x+ 1,y —1,1t)+ k(y + DP(x, y + 1, t) — (kiax + koxy + k3y)
X P(x, y, 1) i (1.3.4)

and letting At — 0, = dP(x, y, t)/dt. In writing the assumed probability laws
(1.3.3), we are assuming that the probability of each of the events occurring
can be determined simply from the knowledge of x and y. This is again the
Markov postulate which we mentioned in Sect. 1.2.1. In the case of Brownian
motion, very convincing arguments can be made in favour of this Markov assump-
tion. Here it is by no means clear. The concept of heredity, i.e., that the behaviour
of progeny is related to that of parents, clearly contradicts this assumption. How
to include heredity is another matter; by no means does a unique prescription
exist.

The assumption of the Markov postulate in this context is valid to the extent
that different individuals of the same species are similar; it is invalid to the extent
that, nevertheless, perceptible inheritable differences do exist.

This type of model has a wide application—in fact to any system to which a
population of indivuduals may be attributed, for example systems of molecules of
various chemical compounds, of electrons, of photons and similar physical parti-
cles as well as biological systems. The particular choice of transition probabilities
is made on various grounds determined by the degree to which details of the
births and deaths involved are known. The simple multiplicative laws, as illustrated
in (1.3.3), are the most elementary choice, ignoring, as they do, almost all details of
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the processes involved. In some of the physical processes we can derive the transi-
tion probabilities in much greater detail and with greater precision.

Equation (1.3.4) has no simple solution, but one major property differentiates
equations like it from an equation of Langevin’s type, in which the fluctuation term
is simply added to the differential equation. Solutions of (1.3.4) determine both
the gross deterministic motion and the fluctuations; the fluctuations are typically
of the same order of magnitude as the square roots of the numbers of individuals
involved. It is not difficult to simulate a sample time development of the process
as in Fig. 1.3c. The figure does show the correct general features, but the model is
so obviously simplified that exact agreement can never be expected. Thus, in
contrast to the situation in Brownian motion, we are not dealing here so much
with a theory of a phenomenon, as with a class of mathematical models, which
are simple enough t0 have a very wide range of approximate validity. We will see
in Chap. 7 that a theory can be developed which can deal with a wide range of
models in this category, and that there is indeed a close connection between this kind
of theory and that of stochastic differential equations.

1.4 Noise in Electronic Systems

The early days of radio with low transmission powers and primitive receivers,
made it evident to every ear that there were a great number of highly irregular
electrical signals which occurred either in the atmosphere, the receiver, or the
radio transmitter, and which were given the collective name of “noise”, since this is
certainly what they sounded like on a radio. Two principal sources of noise are
shot noise and Johnson noise.

1.4.1 Shot Noise

In a vacuum tube (and in solid-state devices) we get a nonsteady electrical current,
since it is generated by individual electrons, which are accelerated across a distance
and deposit their charge one at a time on the anode. The electric current arising
from such a process can be written

I(t) =2 F(t— 1), (1.4.1)
Le

where F(t-1,) represents the contribution to the current of an electron which arrives
at time t,. Each electron is therefore assumed to give rise to the same shaped pulse,
but with an appropriate delay, as in Fig. 1.4.

A statistical aspect arises immediately we consider what kind of choice must be
made for t,. The simplest choice is that each electron arrives independently of the
previous one—that is, the times #, are randomly distributed with a certain average
number per unit time in the range (— oo, o0), or whatever time is under considera-
tion.
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Fig. 1.4. Illustration of shot
noise: identical electric pulses
arrive at random times

Puise height

Time

The analysis of such noise was developed during the 1920’s and 1930’s and was
summarised and largely completed by Rice [1.9]. It was first considered as early as
1918 by Schottky [1.10].

We shall find that there is a close connection between shot noise and processes
described by birth-death master equations. For, if we consider n, the number of
electrons which have arrived up to a time ¢, to be a statistical quantity described by
a probability P(n, t), then the assumption that the electrons arrive independently is
clearly the Markov assumption. Then, assuming the probability that an electron
will arrive in the time interval between ¢ and ¢ 4 At is completely independent of ¢
and n, its only dependence can be on At. By choosing an appropriate constant A, we
may write

Prob (n — n + 1, in time At) = 1At (1.4.2)
so that ¥
P(n, t + Af) = P(n, £) (1 — AA?) + P(n — 1, )3At (1.4.3)

and taking the limit Az —0

P D) — AP(n—1, 1) — Pn, 1) (1.4.4)

which is a pure birth process. By writing
G(s, t) = Xs"P(n, t) (1.4.5)

[here, G(s, t) is known as the generating function for P(n, t), and the particular tech-
nique of solving (1.28) is very widely used], we find

Q% = M s— 1G(s, 1) (1.4.6)

so that
G(s, t) = exp [A(s—1)t]G(s, 0) . (1.4.7)

By requiring at time ¢ = 0 that no electrons had arrived, it is clear that P(0, 0) is
1 and P(n,0) is zero for alln > 1, so that G(s, 0) = 1. Expanding the solution (1.4.7)
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in powers of s, we find
P(n, t) = exp (—At) (A2)"/n! (1.4.8)

which is known as a Poisson distribution (Sect. 2.8.3). Let us introduce the variable
N(t), which is to be considered as the number of electrons which have arrived up to
time ¢, and is a random quantity. Then,

P(n, t) = Prob {N(t) = n}, (1.4.9)

and N(t) can be called a Poisson process variable. Then clearly, the quantity u(t),
formally defined by

u(t) = dN(Odr (1.4.10)

is zero, except when N(¢) increases by 1; at that stage it is a Dirac delta function,
ie.,

u) = Zk‘.é(t — 1), (1.4.11)

where the ¢, are the times of arrival of the individual electrons. We may write
I(t) = [ dt'F(t — t")u(t') . (1.4.12)

A very reasonable restriction on F(¢ — t’) is that it vanishes if # < ¢’, and that
for t — oo, it also vanishes. This simply means that no current arises from an
electron before it arrives, and that the effect of its arrival eventually dies out. We
assume then, for simplicity, the very commonly encountered form

Fl)=qe™™ (t>0)
=0 (t<o0) (1.4.13)

so that (1.4.12) can be rewritten as
I3 r
I(t)= [ di'q e'“""”‘z—]c%,t). (1.4.14)

We can derive a simple differential equation. We differentiate I(¢z) to obtain

dl t) —a(t—t/ dN| t,) ¢ ’ —a(t—¢/ dan(t’
so that
AO . at(r) + qutr). (14.16)
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This is a kind of stochastic differential equation, similar to Langevin’s equation, in
which, however, the fluctuating force is given by qu(t), where u(t) is the derivative
of the Poisson process, as given by (1.4.11). However, the mean of u(t) is nonzero,
in fact, from (1.4.10)

Qut)dry = (dN(r)y = Adt (1.4.17)
AN(t) — At = Adt (1.4.18)

from the properties of the Poisson distribution, for which the variance equals the
mean. Defining, then, the fluctuation as the difference between the mean value
and dN(t), we write

dn(t) = dN(t) — Adt, (1.4.19)
so that the stochastic differential equation (1.4.16) takes the form

dI(t) = [Aq — al(t)] dt + qdn(t) . (1.4.20)
Now how does one solve such an equation? In this case, we have an academic prob-
lem anyway since the solution is known, but one would like to have a technique.
Suppose we try to follow the method used by Langevin—what will we get as an

answer? The short reply to this question is: nonsense. For example, using ordinary
calculus and assuming {I(t)dn(t} = 0, we can derive

d({i(tt» =g — a(t)) and (1.4.21)
_%_ d<1d§t)> — Ag<I(t)> — a<I¥(t)) (1.4.22)

solving in the limit t — oo, where the mean values would reasonably be expected
to be constant one finds

{I(0)) = Ag/a  and (1.4.23)
() = (Aqla)* . (1.4.24)

The first answer is reasonable—it merely gives the average current through the
system in a reasonable equation, but the second implies that the mean square
current is the same as the square of the mean, i.e., the current at £ — co does not
fluctuate! This is rather unreasonable, and the solution to the problem will show
that stochastic differential equations are rather more subtle than we have so far
presented.

Firstly, the notation in terms of differentials used in (1.4.17-20) has been chosen
deliberately. In deriving (1.4.22), one uses ordinary clalculus, i.e., one writes
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d(?) = (I + dI)* — I* = 2IdI + (dI)? (1.4.25)

and then one drops the (dI)? as being of second order in dI. But now look at (1.4.18):
this is equivalent to

{dn(t)?) = Adt (1.4.26)

so that a quantity of second order in dy is actually of first order in dt. The reason
is not difficult to find. Clearly,

dn(t) = dN(t) — A dt, (1.4.27)

but the curve of N) is a step function, discontinuous, and certainly not differen-
tiable, at the times of arrival of the individual electrons. In the ordinary sense,
none of these calculus manipulations is permissible. But we can make sense out of
them as follows. Let us simply calculate {d(I%)) using (1.4.20, 25, 26):

Ay = 2{I{[Aqg — alldt 4 q dn(t)}>
+ {{[Aq — alldt + qdn(t)}?) . (1.4.28)

We now assume again that {I(t)dn(t)) = 0 and expand, after taking averages
using the fact that {dn(t)*) = A dt, to lst order in dt. We obtain

2
%d([’} = {Aq([} — al{I* + %’1 dt (1.4.29)
and this gives

2
¥ (0)y — {I(o0))? = g—j . (1.4.30)
Thus, there are fluctuations from this point of view, as t — co. The extra term in
(1.4.29) as compared to (1.4.22) arises directly out of the statistical considerations
implicit in N(¢) being a discontinuous random function.

Thus we have discovered a somewhat deeper way of looking at Langevin’s kind
of equation—the treatment of which, from this point of view, now seems extremely
naive. In Langevin’s method the fluctuating force X is not specified, but it will
become clear in this book that problems such as we have just considered are very
widespread in this subject. The moral is that random functions cannot normally
be differentiated according to the usual laws of calculus: special rules have to be
developed, and a precise specification of what one means by differentiation becomes
important. We will specify these problems and their solutions in Chap. 4 which will
concern itself with situations in which the fluctuations are Gaussian.

1.4.2 Autocorrelation Functions and Spectra

The measurements which one can carry out on fluctuating systems such as electric
circuits are, in practice, not of unlimited variety. So far, we have considered the
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distribution functions, which tell us, at any time, what the probability distribution
of the values of a stochastic quantity are. If we are considering a measureable quan-
tity x(¢) which fluctuates with time, in practice we can sometimes determine the
distribution of the values of x, though more usually, what is available at one time
are the mean x(¢) and the variance var {x(t).}

The mean and the variance do not tell a great deal about the underlying dyna-
mics of what is happening. What would be of interest is some quantity which is a
is a measure of the influence of a value of x at time ¢ on the value at time ¢ 4+ 1.
Such a quantity is the autocorrelation function, which was apparently first introduced
by Taylor [1.11] as

G(r) = ;ijg%fdt x(1)x(t + 1) . (1.4.31)

This is the time average of a two-time product over an arbitrary large time T,
which is then allowed to become infinite.

Nowadays purpose built autocorrelators exist, which sample data and directly
construct the autocorrelation function of a desired process, from laser light
scattering signals to bacterial counts. It is also possible to construct autocorrelation
programs for high speed on line experimental computers. Further, for very fast
systems, there are clipped autocorrelators, which measure an approximation to
the autocorrelation function given by defining a variable ¢(¢) such that

c(t)=0 x(t) <! ¥
=1 x(t) > 1 e (1.4.32)

and computing the autocorrelation function of that variable.
A more traditional approach is to compute the spectrum of the quantity x(¢).
This is defined in two stages. First, define

T
y(@) = [dt em'x(t) (1.4.33)
0
then the spectrum is defined by
— lim - 2
S(@) = lim 5= [y(@)[*. (1.4.34)

The autocorrelation function and the spectrum are closely connected. By a little
manipulation one finds

S(@) = lim H f cos (wr)de % [ x()xt + r)dt] (1.4.35)

and taking the limit 7— oo (under suitable assumptions to ensure the validity of
certain interchanges of order), one finds
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S(w) = %  cos (wn)G(r)dx . (1.4.36)
1]
This is a fundamental result which relates the Fourier transform of the autocorrela-

tion function to the spectrum. The result may be put in a slightly different form
when one notices that

G(—) = lim lT [ dt x(t +)x(t) = G) (1.4.37)

so we obtain

3

S(w) = %{ _]; e T G(r)dr (1.4.38)

with the corresponding inverse

G(D) = | e S(w)dw . (1.4.39)

This result is known as the Wiener-Khinchin theorem [1.12,13] and has widespread
application.

It means that one may either directly measure the autocorrelation function of a
signal, or the spectrum, and convert back and forth, which by means of the fast
Fourier transform and computer is relatively straightforward.

1.4.3 Fourier Analysis of Fluctuating Functions: Stationary Systems

The autocorrelation function has been defined so far as a time average of a signal,
but we may also consider the ensemble average, in which we repeat the same mea-
surement many times, and compute averages, denoted by { ). It will be shown
that for very many systems, the time average is equal to the ensemble average;
such systems are termed ergodic (Sect. 3.7.1).

If we have such a fluctuating quantity x(¢), then we can consider the average

x()x(t + 1)) = G(7), (1.4.40)

this result being the consequence of our ergodic assumption.
Now it is very natural to write a Fourier transform for the stochastic quantity

x(t)
x(t) = | dow c(w) e (1.4.41)

and consequently,

o(@) = 3= [ dt x(t) e (1.4.42)
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Note that x(¢) real implies
c(w) = c*(—w). (1.4.43)

If the system is ergodic, we must have a constant {x(t)), since the time average
is clearly constant. The process is then stationary by which we mean that all time-
dependent averages are functions only of time differences, i.e., averages of functions
x(t;), x(t;), ... x(t,) are equal to those of x(t, + 4), x(¢t, 4 4), ... x(t, + 4).

For convenience, in what follows we assume {(x) = 0. Hence,

((@)) = 3= [ dt (xye™™ =0 (1.4.44)

{e(w)e*(@)) = (217)2 [ dt dt’emio+i9' (x(1)x(t'))

= (21_n) 8(w — ') [ dr e*°G(7)

= 6(w — w)S(w) . (1.4.45)

Here we find not only a relationship between the mean square {|c(w)|2?) and the
spectrum, but also the result thag stationarity alone implies that c(w) and c*(w’)
are uncorrelated, since the term d(w — ") arises because {x(¢)x(¢')) is a function
only of t — ¢'. ’

1.4.4 Johnson Noise and Nyquist’s Theorem

Two brief and elegant papers appeared in 1928 in which Johnson [1.14] demonst-
rated experimentally that an electric resistor automatically generated fluctuations
of electric voltage, and Nyquist [1.15] demonstrated its theoretical derivation, in
complete accordance with Johnson’s experiment. The principle involved was
already known by Schortky [1.10] and is the same as that used by Einstein and
Langevin. This principle is that of thermal equilibrium. If a resistor R produces
electric fluctuations, these will produce a current which will generate heat. The heat
produced in the resistor must exactly balance the energy taken out of the fluctua-
tions. The detailed working out of this principle is not the subject of this section,
but we will find that such results are common throughout the physics and che-
mistry of stochastic processes, where the principles of statistical mechanics, whose
basis is not essentially stochastic, are brought in to complement those of stochastic
processes. The experimental result found was the following. We have an electric
resistor of resistance R at absolute temperature T. Suppose by means of a suitable
filter we measure E(w)dw, the voltage across the resistor with angular frequency in
the range (w, w + dw). Then, if k is Boltzmann’s constant,
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(E¥w)) = RkT/n . (1.4.46)

This result is known nowadays as Nyquist’s theorem. Johnson remarked. “The
effect is one of the causes of what is called ‘tube noise’ in vacuum tube amplifiers.
Indeed, it is often by far the larger part of the ‘noise’ of a good amplifier.”

Johnson noise is easily described by the formalism of the previous subsection.
The mean noise voltage is zero across a resistor, and the system is arranged so that
it is in a steady state and is expected to be well represented by a stationary process.
Johnson’s quantity is, in practice, a limit of the kind (1.4.34) and may be summa-
rised by saying that the voltage spectrum S(w) is given by

S(w) = RkT/x,, (1.4.47)

that is, the spectrum is flat, i.e., a constant function of w. In the case of light, the
frequencies correspond to different colours of light. If we perceive light to be white,
it is found that in practice all colours are present in equal proportions—the optical
spectrum of white light is thus flat—at least within the visible range. In analogy, the
term white noise is applied to a noise voltage (or any other fluctuating quantity)
whose spectrum is flat.

White noise cannot actually exist. The simplest demonstration is to note that
the mean power dissipated in the resistor in the frequency range (w,, w,) is given
by

T do S@)/R = kT(w; - w;)/n (1.4.48)

so that the total power dissipated in all frequencies is infinite! Nyquist realised this,
and noted that, in practice, there would be quantum corrections which would,
at room temperature, make the spectrum flat only up to 7 x 10'* Hz, which is not
detectable in practice, in a radio situation. The actual power dissipated in the
resistor would be somewhat less than infinite, 107'® W in fact! And in practice
there are other limiting factors such as the inductance of the system, which would
limit the spectrum to even lower frequencies.

From the definition of the spectrum in terms of the autocorrelation function
given in Sect. 1.4, we have

CE(t + DE@)) = G(v) (1.4.49)
— o | doce2r kT (1.4.50)
— 2RKTS(7), (1.4.51)

which implies that no matter how small the time difference 7, E(t + 1) and E(7)
are not correlated. This is, of course, a direct result of the flatness of the spectrum.
A typical model of S(w) that is almost flat is

S(w) = RkT/[n(w?1L+1)] (1.4.52)
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Fig. 1.5.a,b. Correlation Functions (: ) and corresponding spectra (------ ) for (a) short
correlation time corresponding to an almost flat spectrum; (b) long correlation time, giving a
quite rapidly decreasing spectrum

This is flat provided w < 7c™'. The Fourier transform can be explicitly evaluated
in this case to give

CE(t 4+ 1)E(t) ) = (R kTJtc) exp (—1/1¢) (1.4.53)

so that the autocorrelation function vanishes only for T > 7, which is called the
correlation time of the fluctuating voltage. Thus, the delta function correlation
function appears as an idealisation, only valid on a sufficiently long time scale.

This is very reminiscent of Einstein’s assumption regarding Brownian motion
and of the behaviour of Langevin’s fluctuating force. The idealised white noise will
play a highly important role in this book but, in just the same way as the fluctuation
term that arises in a stochastic differential equation is not the same as an ordinary
differential, we will find that differential equations which include white noise as a
driving term have to be handled with great care. Such equations arise very
naturally in any fluctuating system and it is possible to arrange by means of Stratono-
vich’s rules for ordinary calculus rules to apply, but at the cost of imprecise mathe-
matical definition and some difficulties in stochastic manipulation. It turns out to
be far better to abandon ordinary calculus and use the Ito calculus, which is not
very different (it is, in fact, very similar to the calculus presented for shot noise)
and to preserve tractable statistical properties. All these matters will be discussed
thoroughly in Chap. 4.

White noise, as we have noted above, does not exist as a physically realisable
process and the rather singular behaviour it exhibits does not arise in any realisable
context. It is, however, fundamental in a mathematical, and indeed in a physical
sense, in that it is an idealisation of very many processes that do occur. The slightly
strange rules which we will develop for the calculus of white noise are not really
very difficult and are very much easier to handle than any method which always
deals with a real noise. Furthermore, situations in which white noise is not a good
approximation can very often be indirectly expressed quite simply in terms of
white noise. In this sense, white noise is the starting point from which a wide range
of stochastic descriptions can be derived, and is therefore fundamental to the
subject of this book.



2. Probability Concepts

In the preceding chapter, we introduced probability notions without any definitions.
In order to formulate essential concepts more precisely, it is necessary to have
some more precise expression of these concepts. The intention of this chapter is to
provide some background, and to present a number of essential results. It is not a
thorough outline of mathematical probability, for which the reader is referred to
standard mathematical texts such as those by Feller [2.1] and Papoulis [2.2].

2.1 Events, and Sets of Events

It is convenient to use a notation which is as general as possible in order to describe
those occurrences to which we might wish to assign probabilities. For example,
we may wish to talk about a situation in which there are 6.4 x 10'* molecules in a
certain region of space; or a situation in which a Brownian particle is at a certain
point x in space; or possibly there are 10 mice and 3 owls in a certain region of a
forest.

These occurrences are all examples of practical realisations of events. More
abstractly, an event is simply a member of a certain space, which in the cases most
practically occuring can be characterised by a vector of integers

n=(n,nyn;..) .1.1)
or a vector of real numbers
x = (X1, Xz, X3 ...). 2.1.2)

The dimension of the vector is arbitary.
It is convenient to use the language of set theory, introduce the concept of a set
of events, and use the notation

we A (2.1.3)

to indicate that the event @ is one of events contained in 4. For example, one
may consider the set A(25) of events in the ecological population in which there
are no more than 25 animals present; clearly the event @ that there are 3 mice, a
tiger, and no other animals present satisfies

®  A(25). (2.1.4)
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More significantly, suppose we define the set of events A(r, AV) that a molecule
is within a volume element A¥ centred on a point r. In this case, the practical signi-
ficance of working in terms of sets of events becomes clear, because we should nor-
mally be able to determine whether or not a molecule is within a neighbourhood
AV of r, but to determine whether the particle is exactly at r is impossible. Thus, if
we define the event w(y) that the molecule is at point y, it makes sense to ask
whether

wo(y) € A(r, AV) (2.1.5)

and to assign a certain probability to the set A(r, AV), which is to be interpreted as
the probability of the occurrence of (2.1.5)

2.2 Probabilities

Most people have an intuitive conception of a probability, based on their own
experience. However, a precise formulation of intuitive concepts is fraught with
difficulties, and it has been found most convenient to axiomatise probability theory
as an essentially abstract science, in which a probability measure P(A) is assigned
to every set A4, in the space of events, including

the set of all events: Q (2.2.1)
the set of no events: @¥;  * 2.2.2)

in order to define probability, we need our sets of events to form a closed system
(known by mathematicians as a g-algebra) under the set theoretic operations of
union and intersection.

2.2.1 Probability Axioms

We introduce the probability of 4, P(A4), as a function of A4 satisfying the following
probability axioms:

(i) P(4) >0 forall 4, (2.2.3)
(i) P =1, 2.2.4)

(iii) if 4, (i=1, 2, 3, ...) is a countable (but possibly infinite) collection of
nonoverlapping sets, i.e., such that

A, N A4; =g forall i+}], 2.2.5)
then
P(U 4) = 2 P(4)) . (2.2.6)

These are all the axioms needed. Consequentially, however, we have:
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(iv) if 4 is the complement of 4, i.e., the set of all events not contained in A,
then

P(4) = 1 — P(4), (2.2.7)
(v) P(@)=0. (2.2.8)
2.2.2 The Meaning of P(A)

There is no way of making probability theory correspond to reality without
requiring a certain degree of intuition. The probability P(4), as axiomatised above,
is the intuitive probability that an “‘arbitrary” event w, i.e., an event w “‘chosen at
random”, will satisfy w € A. Or more explicitly, if we choose an event “at random”’
from Q N times, the relative frequency that the particular event chosen will satisfy
@ € A approaches P(A4) as the number of times, N, we choose the event, approaches
infinity. The number of choices N can be visualised as being done one after the
other (““independent” tosses of one die) or at the same time (N dice are thrown at the
same time “independently”). All definitions of this kind must be intuitive, as we
can see by the way undefined terms (“‘arbitrary’, “‘at random”, ‘‘independent’’) keep
turning up. By eliminating what we now think of as intuitive ideas and axiomatising
probability, Kolomogorov [2.3] cleared the road for a rigorous development of
mathematical probability. But the circular definition problems posed by wanting
an intuitive understanding remain. The simplest way of looking at axiomatic pro-
bability is as a formal method of manipulating probabilities using the axioms. In
order to apply the theory, the probability space must be defined and the probability
measure P assigned. These are a priori probabilities, which are simply assumed.
Examples of such a priori probabilities abound in applied disciplines. For example,
in equilibrium statistical mechanics one assigns equal probabilities to equal volumes
of phase space. Einstein’s reasoning in Brownian motion assigned a probability ¢(4)
to the probability of a “push” 4 from a position x at time .

The task of applying probability is (i) to assume some set of a priori probabilities
which seem reasonable and to deduce results from this and from the structure of the
probability space, (ii) to measure experimental results with some apparatus which
is constructed to measure quantities in accordance with these a priori probabilities.

The structure of the probability space is very important, especially when the
space of events is compounded by the additional concept of time. This extension
makes the effective probability space infinite-dimensional, since we can construct
events such as “‘the particle was at points x, at times ¢,, n =0, 1, 2, ..., co”.

2.2.3 The Meaning of the Axioms

Any intuitive concept of probability gives rise to nonnegative probabilities, and the
probability that an arbitrary event is contained in the set of all events must be 1
no matter what our definition of the word arbitrary. Hence, axioms (i) and (ii) are
understandable. The heart of the matter lies in axiom (iii). Suppose we are dealing
with only 2 sets 4 and B, and 4 N B = @. This means there are no events con-
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tained in both A4 and B. Therefore, the probability thatw € 4 U B is the probabi-
lity that either € A or w € B. Intuitive considerations tell us this probability is
the sum of the individual probabilities, i.e.,

P(A4 U B) = P{(w € A)or(w € B)} = P(4) + P(B) (2.2.9)

(notice this is not a proof—merely an explanation).

The extension now to any finite number of nonoverlapping sets is obvious, but
the extension only to any countable number of nonoverlapping sets requires some
comment.

This extension must be made restrictive because of the existence of sets labelled
by a continuous index, for example, x, the position in space. The probability of a
molecule being in the set whose only element in x is zero; but the probability of
being in a region R of finite volume is nonzero. The region R is a union of sets of
the form {x} —but not a countable union. Thus axiom (iii) is not applicable and the
probability of being in R is not equal to the sum of the probabilities of beingin {x}.

2.2.4 Random Variables

The concept of a random variable is a notational convenience which is central to
this book. Suppose we have an abstract probability space whose events can be
written x. Then we can introduce the random variable F(x) which is a function of
x, which takes on certain values for each x. In particular, the identity function of
x, written X(x) is of interest; it is'given by

X(x) = x. - (2.2.10)

We shall normally use capitals in this book to denote random variables and small
letters x to denote their values whenever it is necessary to make a distinction.

Very often, we have some quite different underlying probability space 2 with
values w, and talk about X(w) which is some function of w, and then omit explicit
mention of w. This can be for either of two reasons:

i) we specify the events by the values of x anyway, i.e., we identify x and w;
ii) the underlying events w are too complicated to describe, or sometimes, even
to know.

For example, in the case of the position of a molecule in a liquid, we really
should interpret each w as being capable of specifying all the positions, momenta,
and orientations of each molecule in that volume of liquid; but this is simply too
difficult to write down, and often unnecessary.

One great advantage of introducing the concept of a random variable is the
simplicity with which one may handle functions of random variables, e.g., X2,
sin(a - X), etc, and compute means and distributions of these. Further, by defining
stochastic differential equations, one can also quite simply talk about time devel-
opment of random variables in a way which is quite analogous to the classical
description by means of differential equations of nonprobabilistic systems.
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2.3.1 Joint Probabilities

We explained in Sect. 2.2.3 how the occurrence of mutually exclusive events is related
to the concept of nonintersecting sets. We now consider the concept P(4 N B), where
A N Bisnonempty. An event w which satisfies w € A4 will only satisfy w € 4 N B
if o € B as well.

Thus, P(4 N B) = P{(w € A4) and (w € B)} 2.3.1)

and P(4 N B) is called the joint probability that the event w is contained in both
classes, or, alternatsvely, that both the events w € 4 and w € B occur. Joint pro-
babilities occur naturally in the context of this book in two ways:

i) When the event is specified by a vector, e.g., m mice and n tigers. The probability
of this event is the joint probability of [m mice (and any number of tigers)] and
[n tigers (and any number of mice)]. All vector specifications are implicitly joint
probabilities in this sense.

ii) When more than one time is considered: what is the probability that (at time ¢,
there are m, tigers and n, mice) and (at time ¢, there are m, tigers and n, mice).
To consider such a probability, we have effectively created out of the events at time
t, and events at time t,, joint events involving one event at each time. In essence,
there is no difference between these two cases except for the fundamental dynamical
role of time.

2.3.2 Conditional Probabilities

We may specify conditions on the events we are interested in and consider only
these, e.g., the probability of 21 buffaloes given that we know there are 100 lions.
What does this mean? Clearly, we will be interested only in those events contained
in the set B = {all events where exactly 100 lions occur}. This means that we to
define conditional probabilities, which are defined only on the collection of all sets
contained in B. we define the conditional probability as

P(A|B) = P(4 N B)/P(B) (2.3.2)

and this satisfies our intuitive conception that the conditional probability that
w € A (given that we know w € B), is given by dividing the probability of joint
occurrence by the probability (w € B).

We can define in both directions, i.e., we have

P(A N B) = P(A|B)P(B) = P(B| A)P(A). (2.3.3)

There is no particular conceptual difference between, say, the probability of {(21
buffaloes) given (100 lions)} and the reversed concept. However, when two times



26 2. Probability Concepts

are involved, we do see a difference. For example, the probability that a particle is
at position x, at time ¢#,, given that it was at x, at the previous time t,, is a very nat-
ural thing to consider; indeed, it will turn out to be a central concept in this book.
The converse sounds strange, i.e., the probability that a particle is at position x,
at time ¢,, given that it will be at position x, at a later time ¢,. It smacks of clair-
voyance—we cannot conceive of any natural way in which we would wish to consi-
der it, although it is, in principle, a quantity very similar to the ‘“‘natural” condi-
tional probability, in which the condition precedes the events under consideration.

The natural definition has already occurred in this book, for example, the
#(4)d4 of Einstein (Sect. 1.2.1.) is the probability that a particle at x at time ¢ will
be in the range [x + 4, x + 4 + d4] at time ¢ + 7, and similarly in the other
examples. Our intuition tells us as it told Einstein (as can be seen by reading the
extract from his paper) that this kind of conditional probability is directly related
to the time development of a probabilistic system.

2.3.3 Relationship Between Joint Probabilities of Different Orders

Suppose we have a collection of sets B, such that
B,.NB =g (2.3.4)
g B, =Q (2.3.5)

so that the sets divide up the spage 2 into nonoverlapping subsets.
Then

rd

L}(AﬂB,)zAﬂ(L{B,)zAn.Q:A (2.3.6)

Using now the probability axiom (iii), we see that 4 N B, satisfy the conditions
on the A, used there, so that

2IP(4 N B)=PlU (4 U B) 2.3.7)

| = P(4) (2.3.8)
and thus

2. P(4| B)P(B)) = P(d) (2.3.9)

Thus, summing over all mutually exclusive possibilities of B in the joint probability
eliminates that variable.
Hence, in general,

SP(4 N BN Ceo)=P(BNCN ). (2.3.10)

The result (2.3.9) has very significant consequences in the development of the theory
of stochastic processes, which depends heavily on joint probabilities.
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2.3.4 Independence

We need a probabilistic way of specifying what we mean by independent events.
Two sets of events 4 and B should represent independent sets of events if the speci-
fication that a particular event is contained in B has no influence on the probability
of that event belonging to 4. Thus, the conditional probability P(4|B) should be
independent of B, and hence

P(A N B) = P(A)P(B) (2.3.11)
In the case of several events, we need a somewhat stronger specification. The events
(we A) (i=1,24...,n) will be considered to be independent if for any subset
(iy, iy ..., i) Of the set (1,2, ..., n),

P(A‘I n A‘z A‘k) = P(AI1)P(A12) P(Atk) - (2.3.12)

It is important to require factorisation for all possible combinations, as in (2.3.12).
For example, for three sets 4,, it is quite conceivable that

P(4, N A)) = P(A)P(4;) (2.3.13)
for all different 7/ and j, but also that

AANA,=4,NA3=4; N 4,. (see Fig 2.1)
This requires

P(A; N A, N 4;) = P(4; N 4; N A4;5) = P(4; N A;) = P(4,)P(4;) (2.3.149)
# P(A4))P(4;)P(45).

We can see that the occurrence of @ € A4, and w € A4, necessarily implies the oc-

currence of w € A,. In this sense the events are obviously not independent.
Random variables X, X,, Xj, ..., will be said to be independent random vari-

ables, if for all sets of the form 4, = (x such that ¢, < x < b,) the events X,  4,,

A A,

Fig. 2.1. Illustration of statistical independence
in pairs, but not in threes. In the three sets
A; N A, is, in all cases, the central region. By
As appropriate choice of probabilities, we can
arrange

P4, N Al) = P(AI)P(AI)
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X, € A,, X; € A;, ... are independent events. This will mean that all values of the

X, are assumed independently of those of the remaining X,.

2.4 Mean Values and Probability Density

The mean value of a random variable R(w) in which the basic events w are coun-
tably specifiable is given by

(R) = @ P(w)R(w) , (2.4.1)

where P(w) means the probability of the set containing only the single event w. In
the case of a continuous variable, the probability axioms above enable us to define
a probability density function p(w) such that if A(w,, dw,) is the set

(0o < 0 < @y + dwy) , (2.4.2)
then

p(@o)dw, = P[A(wo, dw)] (2.4.3)

= p(wo, dax,) - (2.4.4)

The last is a notation often used by mathematicians. Details of how this is done
have been nicely explained by Fdller [2.1]. In this case,

'd

Ry = | ‘;iw R(@)p(w) . (2.4.5)

e

One can often (as mentioned in Sect. 2.2.4) use R itself to specify the event, so we will
often write

(R> = [ dR Rp(R) . (2.4.6)

Obviously, p(R) is not the same function of R as p(w) is of w-more precisely
p(Ro)dRo = P[Ro < R < RO + dRo)] . (2.4.7)

2.4.1 Determination of Probability Density by Means of Arbitrary Functions
Suppose for every function f(R) we know

{f(R)y = [ dR f(R) p(R), (2.4.8)
then we know p(R). The proof follows by choosing

=0 otherwise.
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Because the expectation of an arbitrary function is sometimes a little easier to work
with than a density, this relation will be used occasionally in this book.

242 Sets of Probability Zero

If a density p(R) exists, the probability that R is in the interval (R,, R, + dR) goes to
zero with dR. Hence, the probability that R has exactly the value R, is zero; and
similarly for any other value.

Thus, in such a case, there are sets S(R,), each containing only one point R,,
which have zero probability. From probability axiom (iii), any countable union of
such sets, i.¢., any set containing only a countable number of points (e.g., all ra-
tional numbers) has probability zero. In general, all equalities in probability theory
are at best only “almost certainly true”, i.e., they may be untrue on sets of proba-
bility zero. Alternatively, one says, for example,

X = Y (with probability 1) (2.4.9)
which is by no means the same as saying that
X(R) = Y(R) for all R. (2.4.10)

Of course, (if the theory is to have any connection with reality) events with proba-
bility zero do not occur.

In particular, notice that our previous result if inspected carefully, only implies
that we know p(R) only with probability 1, given that we know (f(R)) for all f(R).

2.5 Mean Values

The question of what to measure in a probabilistic system is nontrivial. In practice,
one measures either a set of individual values of a random variable (the number of
animals of a certain kind in a certain region at certain points in time; the electric
current passing through a given circuit element in each of a large number of replicas
of that circuit, etc.) or alternatively, the measuring procedure may implicitly con-
struct an average of some kind. For example, to measure an electric current, we may
measure the electric charge transferred and divide by the time taken—this gives a
measure of the average number of electrons transferred per unit time. It is im-
portant to note the essential difference in this case, that it will not normally be pos-
sible to measure anything other than a few selected averages and thus, higher
moments (for example) will be unavailable.

In contrast, when we measure individual events (as in counting animals), we can
then construct averages of the observables by the obvious method

Xy=1 g X(n) . @2.5.1)

The quantities X(n) are the individual observed values of the quantity X. We expect
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that as the number of samples N becomes very large, the quantity X, approaches
the mean {(X) and that, in fact,

lim % 33 f1XC)] = lim JX),, = <S00) (252)

and such a procedure will determine the probability density function p(x) of X if
we carry out this procedure for all functions f. The validity of this procedure
depends on the degree of independence of the successive measurements and is dealt
with in Sect. 2.5.2.

In the case where only averages themselves are directly determined by the meas-
uring method, it will not normally be possible to measure X(n) and therefore, it will
not, in general, be possible to determine f(X),. All that will be available will be
f(Xy)—quite a different thing unless f is linear. We can often find situations in
which msasurable quantities are related (by means of some theory) to mean values
of certain functions, but to hope to measure, for example, the mean value of an
arbitrary function of the number of electrons in a conductor is quite hopeless. The
mean number—yes, and indeed even the mean square number, but the measuring
methods available are not direct. We do not enumerate the individual numbers of
electrons at different times and hence arbitrary functions are not attainable.

2.5.1 Moments, Correlations, and Covariances

Quantities of interest are given by tahe moments {X™) since these are often easily
calculated. However, probability densities must always vanish as x — + oo, so we
see that higher moments tell us only about the properties of unlikely large values of
X. In practice we find that the most important quantities are related to the first
and second moments. In particular, for a single variable X, the variance defined by

var{X} = {o[X]}? = (X — XOP, (2.5.3)

and as is well known, the variance var {X} or its square root the standard deviation
o[X], is a measure of the degree to which the values of X deviate from the mean

value (X).
In the case of several variables, we define the covariance matrix as
X, Xy = (X — <XD) (X; — (Xp)) = XXp) — (XpdX)) . (2.5.4)
" Obviously,
X, X)) = var {X}} . (2.5.95)

If the variables are independent in pairs, the covariance matrix is diagonal.

2.5.2 The Law of Large Numbers

As an application of the previous concepts, let us investigate the following model
of measurement. We assume that we measure the same quantity N times, obtaining
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sample values of the random variable X(n) (n = 1, 2, ..., N). Since these are al;
measurements of the same quantity at successive times, we assume that for every
n, X(n) has the same probability distribution but we do not assume the X(n) to be
independent. However, provided the covariance matrix {X(n), X(;m)) vanishes suf-
ficiently rapidly as |n — m| — oo, then defining

X=L S xmw, 2.5.6)

n=1
we shall show

lim Xy = (X) . (2.5.7)

N—seo

It is clear that
Xyy = <(X). (2.5.8)

We now calculate the variance of Xy and show that as N — oo it vanishes under
certain conditions:

Fuly = By = 3 Ko, Xad 259

Provided <{X,, X,,» falls off sufficiently rapidly as |n — m| — oo, we find

lim (var {Xy}) = 0 (2.5.10)

N—+oo

so that lim X is a deterministic variable equal to (X .
N—+oo

Two models of {X,, X,,» can be chosen.
a) (X, Xy ~ KAlm™ <) (2.5.11)

for which one finds

= 2K (AN*2 — NA—1D — A K
var (%} = 2% (,11 = ) ) - X—~0. (2.5.12)
b) X, Xp> ~ |n—m|™! (n #+ m) (2.5.13)

and one finds approximately

var { Xy} ~%logN — LN—»O. (2.5.14)

In both these cases, var {X,} — 0. The rate of convergence is very different. In-
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terpreting n, m as the times at which the measurement is carried out, one sees than
even very slowly decaying correlations are permissible. The law of large numbers
comes in many forms, which are nicely summarised by Papoulis [2.2]. The central
limit theorem is an even more precise result in which the limiting distribution
function of Xy — (X is determined (see Sect. 2.8.2).

2.6 Characteristic Function

One would like a condition where the variables are independent, not just in pairs.
To this end (and others) we define the characteristic function.

If s is the vector (s, 53, -.., S,), and X the vector of random variables (X,, X,,
..., X,), then the characteristic function (or moment generating function) is defined
by

#(s) = <exp (is - X)) = [ dx p(x) exp (is - x) . (2.6.1)

The characteristic function has the following properties [Ref. 2.1, Chap. XV]

i) ¢0)=1
i) ¢l(9)| <1
iii) g(s) is a uniformly continuous function of its arguments for all finite real s [2.5].

‘,
iv) If the moments (I X,™) exist, then

apxm =1 (~ig) "] - (2.62)

v) A sequence of probability densities converges to limiting probability density if
and only if the corresponding characteristic functions converge to the corresponding
characteristic function of the limiting probability density.

vi) Fourier inversion formula
p(x) = (2m)™" [ ds §(s) exp (—ix - 5) (2.6.3)

Because of this inversion formula, g(s) determines p(x) with probability 1. Hence,
the characteristic function does truly characterise the probability density.

vii) Independent random variables: from the definition of independent random
variables in Sect. 2.3.4, it follows that the variables Xj, X, ... are independent if
and only if

p(xh X2y ey xn) = Pl(xl)Pz(xz) pn(xn)y (264)

in which case,
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¢(s,, Sy ciny Sp) = ¢1(sl)¢2(52) ¢n(sn) (2'6-5)

(viii) Sum of independent random variables: if X,, X,, ..., are independent ran-
dom variables and if

Y=>x, (2.6.6)

and the characteristic function of Y is

$,(s) = <{exp (isY)) , (2.6.7)
then ?
#:(5) = [T 4s) - (2.6.8)

The characteristic function plays an important role in this book which arises from
the convergence property (v), which allows us to perform limiting processes on the
characteristic function rather than the probability distribution itself, and often makes
proofs easier. Further, the fact that the characteristic function is truly characteristic,
i.e., the inversion formula (vi), shows that different characteristic functions arise
from different distributions. As well as this, the straightforward derivation of the
moments by (2.6.2) makes any determination of the characteristic function directly
relevant to measurable quantities.

2.7 Cumulant Generating Function: Correlation Functions and
Cumulants

A further important property of the characteristic function arises by considering its
logarithm

&(s) = log ¢(s) 2.7.1)

which is called the cumulant generating function. Let us assume that all moments
exist so that ¢(s) and hence, &(s), is expandable in a power series which can be
written as

m,.m

- sty sy n
) = 3 " ZXPAg . XS 2m) 2.7.2)

my!. ..

where the quantities {(XT1X72 ... X™) are called the cumulants of the variables

X. The notation chosen should not be taken to mean that the cumulants are func-

tions of the particular product of powers of the X it rather indicates the moment

of highest order which occurs in their expression in terms of moments. Stratonovich
’
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[2.4] also uses the term correlation functions, a term which we shall reserve for
cumulants which involve more than one X,. For, if the X are all independent, the
factorisation property (2.6.6) implies that &(s) (the cumulant generating function)
is a sum of n terms, each of which is a function of only one s, and hence the coeffi-
cient of mixed terms, i.e., the correlation functions (in our terminology) are all zero
and the converse is also true. Thus, the magnitude of the correlation functions
is a measure of the degree of correlation.

The cumulants and correlation functions can be evaluated in terms of moments
by expanding the characteristic function as a power series:

40 = 55 sy xony— -

r=1 .

Tl m &(r, l_Zlm,) sTsT2 . sme (2.7.3)

expanding the logarithm in a power series, and comparing it with (2.7.2) for &(s)
No simple formula can be given, but the first few cumulants can be exhibited: we
find

(X = <X (2.7.4)
(XX = <X X)) — (XX} 2.7.5)
((X,X,X,,)) = (X X)X,y — (X X)Xy — (XX, Xi)

— LX XX -lj‘2<X,-)(X,-)(Xk) (2.7.6)

(here, all formulae are valid for any number of equal i,j,lf,l). An explicit general
formula can be given as follows. Suppose we wish to calculate the cumulant
(X, X X; ... X,). The procedure is the following:

i) write a sequence of n dots ...... ;
ii) divide into p + 1 subsets by inserting angle brackets

CDC DD D

iii) distribute the symbols X, ... X, in place of the dots in such a way that all
different expressions of this kind occur, e.g.,

XXXy = (X)X Xp) # (X3 (X1 X) ;

iv) take the sum of all such terms for a given p. Call this C,(X,, X3, ..., X,);
n—1
VX X, ... Xo) =‘§(‘,’ (=12 p!C, (X, X3, ..., X)) . 217

A derivation of this formula was given by Meeron [2.6]. The particular procedure
is due to van Kampen [2.7].

vi) Cumulants in which there is one or more repeated element, e.g., (X1 X,X):
simply evaluate (X, X,X;X,) and set X, = X, in the resulting expression.
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2.7.1 Example: Cumulant of Order 4: (X, X,X3X,)

a)p=0
only term is (X, X;X3X,) = Co(X1 X2 X3X,).
b)p=1

partition {.>{...>
Term {{X )X, X3X) + X){X3X X)) + {(Xa){X X1 X3)
+ XXX X)) = D,
partition {..>{..)
Term (X X ){X5X) + (X Xap{Xo X + (X X)X X5) = D, .

Hence,
D, + D, = Cl(XlXZXBXA) .
c)p=2

partition {.>{){..)

Term (X)) (XXX + (Xi){X5){XoXs) + (XXX X5)
+ XXX Xy + (XXX XY + (X)X (XX
= Cy(X, X2 X5X,) .

dp=3
partition {.){.>{H{D
Term (X ){Xo){X){X ) = C3(X1 X, X3X,) .
Hence,
(X1 XXX = Co — Cy + 2C, — 6C, 2.7.8

2.7.2 Significance of Cumulants

From (2.7.4, 5) we see that the first two cumulants are the means {X,) and co
variances (X, X;>. Higher-order cumulants contain information of decreasing
significance, unlike higher-order moments. We cannot set all moments higher thar
a certain order equal to zero since (X?"y > (X")? and thus, all moments contair
information about lower moments.

For cumulants, however, we can consistently set

(X) =a
(x*) = o
(X} =0(n>2),
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and we can easily deduce by using the inversion formula for the characteristic func-
tion that

P(x) = —s—expl— (x — @207, 27.9)
a Gaussian probability distribution. It does not, however, seem possible to give
more than this intuitive justification. Indeed, the theorem of Marcienkiewicz [2.8,9]
shows that the cumulant generating function cannot be a polynomial of degree
greater than 2, that is, either all but the first 2 cumulants vanish or there are an
infinite number of nonvanishing cumulants. The greatest significance of cumulants
lies in the definition of the correlation functions of different variables in terms of
them ; this leads further to important approximation methods.

2.8 Gaussian and Poissonian Probability Distributions

2.8.1 The Gaussian Distribution

By far the most important probability distribution is the Gaussian, or normal
distribution. Here we collect together the most important facts about it.

If X is a vector of n Gaussian random variables, the corresponding multi-
variate probability density function can be written

p(x) = [2n)" det(@)]2expl—4(x — £o~'(x — 9] @8.1)
so that -’

(XY = [dx xp(x) = % 2.8.2)

(XXTy = [ dx xxTp(x) = %" + o (2.8.3)

and the characteristic function is given by
#(s) = {exp(is™ X)) = exp(is™ £ — 45T g5) . (2.8.4)

This particularly simple characteristic function implies that all cumulants of higher
order than 2 vanish, and hence means that all moments of order higher than 2 are
expressible in terms of those of order 1 and 2. The relationship (2.8.3) means that
is the covariance matrix (as defined in Sect. 2.5.1), i.e., the matrix whose elements
are the second-order correlation functions. Of course, ¢ is symmetric.

The precise relationship between the higher moments and the covariance matrix
o can be written down straightforwardly by using the relationship between the
moments and the characteristic function [Sect.2.6 (iv)]. The formula is orly simple
if £ =0, in which case the odd moments vanish and the even moments satisfy

2M)!
XXXy .y = SR (040umn - Yarm (238.4)
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where the subscript “sym’” means the symmetrised form of the product of ¢’s, anc
2N is the order of the moment. For example,

4! (1
(XXX:X,) = Z2_| ?[012034 + 041023 + 013024
= 012034 + 041023 + 013024 (2.8.5
Al
Xi) = 3757 {oh} = 3ak. (2.8.6

2.8.2 Central Limit Theorem

The Gaussian distribution is important for a variety of reasons. Many variables are
in practice, empirically well approximated by Gaussians and the reason for thi:
arises from the central limit theorem, which, roughly speaking, asserts that a randon
variable composed of the sum of many parts, each independent but arbitrarily dis
tributed, is Gaussian. More precisely, let X;, X;, X, ..., X, be independent randon
variables such that

X) =0, var {X;} = b} 2.8.7
and let the distribution function of X, be p,(x,).
Define
S, =3 Xi, 2838
and
0% = var {S,} = 3b?. (2.8.9

We require further the fulfilment of the Lindeberg condition:

n

lim[%z [ dxx p,(x)]=0 (2.8.10

n—o | Op =1 IxI>top

for any fixed ¢ > 0. Then, under these conditions, the distribution of the normalisec
sums S,/g, tends to the Gaussian with zero mean and unit variance.

The proof of the theorem can be found in [2.1]. It is worthwhile commenting 03
the hypotheses, however. We first note that the summands X, are required to b
independent. This condition is not absolutely necessary; for example, choose

X, = i‘; Y, 28.11
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where the Y, are independent. Since the sum of the X’s can be rewritten as a sum of
Y’s (with certain finite coefficients), the theorem is still true.

Roughly speaking, as long as the correlation between X, and X, goes to zero
sufficiently rapidly as |i—j|— oo, a central limit theorem will be expected. The Lin-
deberg condition (2.8.10) is not an obviously understandable condition but is the
weakest condition which expresses the requirement that the probability for | X,|
to be large is very small. For example, if all the b, are infinite or greater than some
constant C, it is clear that g2 diverges as n — co. The sum of integrals in (2.8.10)
is the sum of contributions to variances for all | X;| > ta,, and it is clear that as n
— oo, each contribution goes to zero. The Lindeberg condition requires the sum of
all the contributions not to diverge as fast as o2 In practice, it is a rather weak
requirement; satisfied if | X;| < C for all X, or if p,(x) go to zero sufficiently rapidly
as x — £ oo. An exception is

pi(x) = an(x* + a})] ™ ; , (2.8.12)
the Cauchy, or Lorentzian distribution. The variance of this distribution is infinite
and, in fact, the sum of all the X, has a distribution of the same form as (2.8.12)
with g, replaced by i}a,. Obviously, the Lindeberg condition is not satisfied.

i=1

A related condition, also known as the Lindeberg condition, will arise in Sect.
3.3.1. where we discuss the replacement of a discrete process by one with con-
tinuous steps.

2.8.3 The Poisson Distribution

e

A distribution which plays a central role in the study of random variables which
take on positive integer values is the Poisson distribution. If X is the relevant
variable the Poisson distribution is defined by

P(X = x) = P(x) = e %a*/x! (2.8.13)
and clearly, the factorial moments, defined by

XDp=(x(x—=1D...(x—r+1), (2.8.14)
are given by

XDe=ad", (2.8.15)

For variables whose range is nonnegative integral, we can very naturally define the
generating function

G(s) = 3 s*P(x) = (s%) (2.8.16)

x=0

which is related to the characteristic function by
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G(s) = ¢(—ilog 5) . (2.8.17)

The generating function has the useful property that

n _[{9)\"
X = [(as) G(S)L.' (2.8.18)
For the Poisson distribution we have
G(s) = 2‘6 e_x(—s,") — expla(s — 1)] . (2.8.19)

We may also define the factorial cumulant generating function g(s) by
g(s) = log G(s) (2.8.20)
and the factorial cumulants {X"); by

(s—=1)

r!

g) = 3 (XN

We see that the Poisson distribution has all but the first factorial cumulant zero.

The Poisson distribution arises naturally in very many contexts, for example,
we have already met it in Sect.1.2.3 as the solution of a simple master equation.
It plays a similar central role in the study of random variables which take on integer
values to that occupied by the Gaussian distribution in the study of variables with
a continuous range. However, the only simple multivariate generalisation of the
Poisson is simply a product of Poissons, i.e., of the form

e %i(a,)
x!

P(x,, X3, X3, ...) = 1lj| (2.8.21)

There is no logical concept of a correlated multipoissonian distribution, similar to
that of a correlated multivariate Gaussian distribution.

2.9 Limits of Sequences of Random Variables

Much of computational work consists of determining approximations to random
variables, in which the concept of a limit of a sequence of random variables naturally
arises. However, there is no unique way of defining such a limit.

For, suppose we have a probability space €2, and a sequence of random vari-
ables X, defined on Q. Then by the limit of the sequence as n — oo

X =IlimX,, 29.1)

we mean a random variable X which, in some sense, is approached by the sequence



40 2. Probability Concepts

of random variables X,. The various possibilities arise when one considers that the
probability space 2 has elements w which have a probability density p(w). Then we
can choose the following definitions.

2.9.1 Almost Certain Limit

X, converges almost certainly to X if, for all w except a set of probability zero
lim X, (w) = X(w). 2.9.2)

Thus each realisation of X, converges to X and we write

aclim X, =X (2.9.3)

n—eoco

2.9.2 Mean Square Limit (Limit in the Mean)

Another possibility is to regard the X,(w) as functions of w, and look for the
mean square deviation of X, (w) from X(w). Thus, we say that X, converges to X in
the mean square if

lim [ de p(@)[X(@) — X()]* = lim (X, — X)*) =0 (2.9.4)
n—co x n—o

This is the kind of limit which is well known in Hilbert space theory. We write

ms-lim X, = X (2.9.5)

n—oo

2.9.3 Stochastic Limit, or Limit in Probability

We can consider the possibility that X,(w) approaches X because the probability of
deviation from X approaches zero: precisely, this means that if for any ¢ > 0

lim P(|X, — X| >¢) =0 (2.9.6)

n—soco

then the stochastic limit of X, is X.

Note that the probability can be written as follows. Suppose x.(z) a function
such that

x:(2) =1 lz| > e
=0 lz] <e (2.9.7)

Then

P(|X, — X| > &) = [ do p(@)x| X, — X1|) . (2.9.8)
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In this case, we write

st-lm X, = X (2.9.9)

2.9.4 Limit in Distribution

An even weaker form of convergence occurs if, for any continuous bounded
function f(x)

lim (X)) = (fX) - (2.9.10)

In this case the convergence of the limit is said to be in distribution. In particular,
using exp(ixs) for f(x), we find that the characteristic functions approach each
other, and hence the probability density of X, approaches that of X.

2.9.5 Relationship Between Limits

The following relations can be shown.

Almost certain convergence —» stochastic convergence.
Convergence in mean square ——» stochastic convergence.
Stochastic convergence — convergence in distribution.

All of these limits have uses in applications.
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3.1 Stochastic Processes

All of the examples given in Chap. 1 can be mathematically described as stochastic
processes by which we mean, in a loose sense, systems which evolve probabilistically
in time or more precisely, systems in which a certain time-dependent random
variable X(t) exists. We can measure values x,, x,, X3, ..., etc., of X(¢) at times ¢,,
t,, ts, ... and we assume that a set of joint probability densities exists

p(xy, 15 X, U5 X3, 155 .0) (3.1.1)

which describe the system completely.
In terms of these joint probability density functions, one can also define condi-
tional probability densities:

P(xy, sy X3y By o | Y1, T15 Yoy T2 enn)

= p(x), t,; X3, 25 .5 Y1, T Y2 T2; PPy, T Y2, T2 -el). (3.1.2)

These definitions are valid independently of the ordering of the times, although it is
usual to consider only times which increase from right to left i.e.,

WhZ2hLZ2HL2 .. 2T 2T 2 ... (3.1.3)

The concept of an evolution equation leads us to consider the conditional probabili-
ties as predictions of the future values of X(¢) (i.e., x,, x,, ... attimes ¢,, t,, ...), given
the knowledge of the past (values y,, y,, ..., at times 7,,7, ...).

The concept of a general stochastic process is very loose. To define the process
we need to know at least all possible joint probabilities of the kind in (3.1.1). If such
knowledge does define the process, it is known as a separable stochastic process.
All the processes considered in this book will be assumed to be separable.

The most simple kind of stochastic process is that of complete independence:

p(xXy, 15 X, 15 X3, 155 .0) = I:Ip(xn t) (3.14)

which means that the value of X at time ¢ is completely independent of its values in
the past (or future). An even more special case occurs when the p(x,, t;) are inde-
pendent of ¢,, so that the same probability law governs the process at all times. We
then have the Bernoulli trials, in which a probabilistic process is repeated at succes-
sive times.
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The next most simple idea is that of the Markov process in which knowledge o
only the present determines the future.

3.2 Markov Process

The Markov assumption is formulated in terms of the conditional probabilities. W«
require that if the times satisfy the ordering (3.1.3), the conditional probability i
determined entirely by the knowledge of the most recent condition, i.e.,

p(xy, 1y X3 by oo | D1, T1s Py T2 enl)
= p(xy, tiy X3 b5 - [ Y1, T1)- (3.2.1

This is simply a more precise statement of the assumptions made by Einstein
Smoluchowski and others. It is, even by itself, extremely powerful. For it mean
that we can define everything in terms of the simple conditional probabilitie
p(xy, t, |y, 7). For example, by definition of the conditional probability densit
p(xys by Xg, 1| Y1, T1) = p(xy, 4| Xy, b5 Y1, T)P(Xs, 12| Y1, T)) and using the Marko
assumption (3.2.1), we find

Pxy, 15 Xa, £y Y1, 1) = p(Xy, 8y | Xa, 12)P(%2, 12| Y1, T1) (3.2.2
and it is not difficult to see that an arbitrary joint probability can be expressed sim
ply as

p(xh tl 5 X2, t2; X3, t3; cee Xpy In)

= p(xy, t;| X2, t)p(X2, t2] X3, t3)p(X3, 3] X4, 14) - (3.2.:
o p(xn—h tn—l |xm tn)P(xm tu)

provided
WhZ2hL262 . .2, 2t,. (3.2.¢
3.2.1 Consistency—the Chapman-Kolmogorov Equation

From Sect.2.3.3 we require that summing over all mutually exclusive events ¢
one kind in a joint probability eliminates that variable, i.e.,

SPANBNC.)=PANC..); (3.2.¢

and when this is applied to stochastic processes, we get two deceptively simile
equations:

pxy, 1) = J‘ dx, p(x,, t,; X3, t2)
= J‘ dx; p(x,, 1] X3, t2)p(x2, 1) . (3.2.¢
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This equation is an identity valid for all stochastic processes and is the first in a
hierarchy of equations, the second of which is

P(xy, x5, ) = I dx, p(xy, ty; X, b | X3, 1)
= I dx, p(x,, t,| x3, tz; X3, t3)p(X3, t2] X3, 15). (3.2.7)

This equation is also always valid. We now introduce the Markov assumption. If
t, = t, > t;, we can drop the ¢; dependence in the doubly conditioned probability
and write

p(xy, 8] x5, 85) = J‘ dx, p(xy, t;| x2, £)p(x2, 12| X3, t3) (3.2.8)

which is the Chapman-Kolmogorov equation.

What is the essential difference between (3.2.8) and (3.2.6)? The obvious answer
is that (3.2.6) is for unconditioned probabilities, whereas (3.2.7) is for conditional
probabilities. Equation (3.2.8) is a rather complex nonlinear functional equation
relating all conditional probabilities p(x,, #,|x,, t,) to each other, whereas (3.2.6)
simply constructs the one time probabilities in the future ¢, of ¢,, given the
conditional probability p(x,, t, | x2, t,).

The Chapman-Kolmogorov equation has many solutions. These are best under-
stood by deriving the differential form which is done in Sect. 3.4.1 under certain
rather mild conditions.

3.2.2 Discrete State Spaces

e

In the case where we have a discrete variable, we will use the symbol N = (N, N,,
N; ...), where the N, are random variables which take on integral values. Clearly,
we now replace

fdx 3 (3.2.9)
and we can now write the Chapman-Kolmogorov equation for such a process as
P(n,, t,|ns, t3) = 3 P(ny, t,|my, 1)) P(ny, |05, t5) . (3.2.10)

This is now a matrix multiplication, with possibly infinite matrices.

3.2.3 More General Measures

A more general formulation would assume a measure du(x) instead of dx where a
variety of choices can be made. For example, if u(x) is a step function with steps at
integral values of x, we recover the discrete state space form. Most mathematical
works attempt to be as general as possible. For applications, such generality can
lead to lack of clarity so, where possible, we will favour a more specific notation.
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3.3 Continuity in Stochastic Processes

Whether or not the random variable X(¢) has a continuous range of possible values
is a completely different question from whether the sample path of X(¢) is a continu-
ous function of ¢. For example, in a gas composed of molecules with velocities F{(¢),
it is clear that all possible values of ¥(¢) are in principle realisable, so that the range
of W(¢) is continuous. However, a model of collisions in a gas of hard spheres as
occurring instantaneously is often considered, and in such a model the velocity be-
fore the collision, v;, will change instantaneously at the time of impact to another
value v, so the sample path of F(¢) is not continuous. Nevertheless, in such a
model, the position of a gas molecule X(¢) would be expected to be continuous.

A major question now arises. Do Markov processes with continuous sample paths
actually exist in reality? Notice the combination of Markov and continuous. It is
almost certainly the case that in a classical picture (i.e., not quantum mechanical),
all variables with a continuous range have continuous sample paths. Even the hard
sphere gas mentioned above is an idealisation and more realistically, one should
allow some potential to act which would continuously deflect the molecules during
a collision. But it would also be the case that, if we observe on such a fine time scale,
the process will probably not be Markovian. The immediate history of the whole
system will almost certainly be required to predict even the probabilistic future.
This is certainly born out in all attempts to derive Markovian probabilistic equa-
tions from mechanics. Equations which are derived are rarely truly Markovian—
rather there is a certain characteristic memory time during which the previous
history is important (Haake [3.1]).

This means that there is really no such thing as a Markov process; rather,
there may be systems whose memory time is so small that, on the time scale on
which we carry out observations, it is fair to regard them as being well appro-
ximated by a Markov process. But in this case, the question of whether the sample
paths are actually continuous is not relevant. The sample paths of the approxi-
mating Markov process certainly need not be continuous. Even if collisions of mole-
cules are not accurately modelled by hard spheres, during the time taken for a
collision, a finite change of velocity takes place and this will appear in the appro-
ximating Markov. process as a discrete step. On this time scale, even the position
may change discontinuously, thus giving the picture of Brownian motion as
modelled by Einstein.

In chemical reactions, for example, the time taken for an individual reaction to
proceed to completion—roughly of the same order of magnitude as the collision
time for molecules—provides yet another minimum time, since during this time,
states which cannot be described in terms of individual molecules exist. Here, there-
fore, the very description of the state in terms of individual molecules requires a
certain minimum time scale to be considered.

However, Markov processes with continuous sample paths do exist mathema-
tically and are useful in describing reality. The model of the gas mentioned above
provides a useful example. The position of the molecule is indeed probably best
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modelled as changing discontinuously by discrete jumps. Compared to the distances
travelled, however, these jumps are infinitesimal and a continuous curve provides
a good approximation to the sample path. On the other hand, the velocities can
change by amounts which are of the same order of magnitude as typical values at-
tained in practice. The average velocity of a molecule in a gas is about 1000 m/s
and during a collision can easily reverse its sign. The velocities simply cannot reach
(with any significant probability) values for which the changes of velocity can be
regarded as very small. Hence, there is no sense in a continuous path description of
velocities in a gas.

3.3.1 Mathematical Definition of a Continuous Markov Process

For a Markov process, it can be shown [3.2] that with probability one, the sample
paths are continuous functions of ¢, if for any ¢ > 0 we have

lim & [ dxp(xt+At|z,1)=0 (3.3.1)

Ar—0 At lx—21>e

uniformly in z, ¢ and At.

This means that the probability for the final position x to be finitely different
from z goes to zero faster thaf\At, as At goes to zero. [Equation (3.3.1) is sometimes
called the Lindeberg condition.]

Examples ¥
i) Einstein’s solution for his f(x, t) (Sect. 1.2.1) is really the conditional probability
p(x, t]0, 0). Following his method we would find

p(x, t + At|z, t) = (4nDAt)~"* exp [— (x — 2)*/4DAt)] (3.3.2)

and it is easy to check that (3.3.1) is satisfied in this case. Thus, Brownian motion
in Einstein’s formulation has continuous sample paths.

ii) Cauchy Process: Suppose
At ) 2
p(x,t + At|z, t) = ?/[(x — z)* 4+ At?]. (3.3.3)

Then this does not satisfy (3.3.1) so the sample paths are discontinuous.
However, in both cases, we have as required for consistency

Lim p(x,t + At|z,t) = d(x — 2), (3.3.49)
=0

and it is easy to show that in both cases, the Chapman-Kolomogorov equation is
satisfied.

The difference between the two processes just described is illustrated in Fig. 3.1
in which simulations of both processes are given. The difference between the two is
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I Fig. 3.1. Illustration of sample paths of
2 aind I the Cauchy process X(f) (----- ) and

~——— |

X(t) . a Brownian motion W(t
—al

—_—————

W(t)

te

striking. Notice, however, that even the Brownian motion curve is extremely irre-
gular, even though continuous—in fact it is nowhere differentiable. The Cauchy-
process curve is, of course, wildly discontinuous.

3.4 Differential Chapman-Kolmogorov Equation

Under appropriate assumptions, the Chapman-Kolmogorov equation can be re-
duced to a differential equation. The assumptions made are closely connected with
the continuity properties of the process under consideration. Because of the form
of the continuity condition (3.3.1), one is led to consider a method of dividing
the differentiability conditions into parts, one corresponding to continuous motion
of a representative point and the other to discontinuous motion.

We require the following conditions for all ¢ > 0:

i) fol p(x,t 4 At|z, t)/At = W(x|z,t) (3.4.1)
0
uniformly in x, z, and ¢ for |x — z| > ¢;

i) lim A [ dx(u—z)p(x, t + Atz 1) = Az, 1) + 0@ ; (3.4.2)

lx—zl<e

i) lim A dx(u—z) (g — 2plx, 1+ At]z, 1) = By(z, 1) + 0(); (3.4.3)

Ar— lx—zi<e

the last two being uniform in z, ¢, and .
Notice that all higher-order coefficients of the form in (3.4.2,3) must vanish. For
example, consider the third-order quantity defined by

lim & [ dx(x — )0 — 2)(n — 20 plx, 1 + At] 2, 1)

Ar—0 lx—zl<e

= Cuulz, 1) + 0(e) . (3.4.4)



48 3. Markov Processes

Since C, is symmetric in i, j, k, consider

Zka,a,akC,,k(z, t) = C(a, z,t) 3.4.5)
i,
so that
ot t) =L Ga z,0) (3.4.6)
S D) = 3 fadayoa, B s
Then,
|C(a,z,0)| <lim L [ |e-(x — Dlle-(x — QP p(x, 1 + 41z, 1) dx
At—0 At lx~zl<e
+ O(¢)

< lefe lim [ [a-(x — Pp(x, 1 + At|z, 1)dx + O()
t—0

= ¢|a|[aa;B,(z, 1) + O(e)] + O(e)
= 0(e) (3.4.7)

so that C is zero. Similary, we can show that all corresponding higher-order quanti-
ties also vanish.

According to the condition for continuity (3.3.1), the process can only have con-
tinuous paths if W(x|z, t) vanishes for all x # z. Thus, this function must in some
way describe discontinuous motion, while the quantities "4, and B,, must be
connected with continuous motion.

3.4.1 Derivation of the Differential Chapman-Kolmogorov Equation
We consider the time evolution of the expectation of a function f(z) which is

twice continuously differentiable.
Thus,

0, [ dx f(x)p(x, t|y, t")

= lim ([ dx f(®)lp(x, ¢ + At]y, 1') = plx, 1], )]} /At (34.8)
=lim {[ dx [ dz f(x)p(x, 1 + Atlz, Dp(z, 1]y, 1)
— [ dzf(R)p(z, t]y, 1)} /AL, (3.4.9)

where we have used the Chapman-Kolmogorov equation in the positive term of
(3.4.8) to produce the corresponding term in (3.4.9).

We now divide the integral over x into two regions |x — z| > ¢ and |x — z|
< &. When |x — z| < ¢, since f(z) is, by assumption, twice continuously differen-
tiable, we may write
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1) = 1@ + 24D, - 2) + 55 T2 60— 2 - 2)
+ |x — z|*R(x, 2) , (3.4.10)

where we have (again by the twice continuous differentiability)
|R(x,z)| -0 as |x—z|—0. 34.11)

Now substitute in (3.4.9):

(3.4.9) = llm—-[ {f dxdz [Z(x, z,) + 2 3 (x; — z)(x; — z) e;%’)z,]

A0 A lx—zl<e
X p(x, t + At|z, 1) p(z,t|y, t')
+ [[ dxdz |x — z|*R(x, 9p(x, t 4 At|z, t)p(z, |y, 1)

lx—zl<e

+ [[ dxdz f(x)p(x, t + At|z, )p(z, 1|y, t')

lx—2|2e

+ [ dxdz f(z)p(x, t + At|z, )p(z, t|y, 1)

lx—zi<e

— [[ dxdz f(2)p(x, t + At|z, )p(z, t|y, t') (3.4.12)

[notice that since p(x, ¢t + At|z, t) is a probability, the integral over x in the last
term gives 1—this is simply the last term in (3.4.9)].
We now consider these line by line.

Lines 1,2: by the assumed uniform convergence, we take the limit inside the integral
to obtain [using conditions (ii) and (iii) of Sect. 3.4]

Jde| ) 2L + 3 2 8@ 521 |t 1y, 1) + 060, (3.4.13)
Line 3: this is a remainder term and vanishes as ¢ — 0. For

|— [ dx|x— z|*R(x, 2)p(x, t + At|z,1)|
Atlx—xl(a

< [AL [ dx|x—z|’p(x,t + At]z, t)] Max | R(x, 7) | (3.4.14)
tlx—zl(x lx—zl<e

— [ Bulz, 1) + 0@ (Max |R(x, 2)|}.
x—z|<e
From (3.4.11) we can see that as ¢ — 0, the factor in curly brackets vanishes.

Lines 4-6: We can put these all together to obtain

[| dxdzf()[W(z|x, )p(x, t|y, t') — W(x|z, )p(z, t]y, 1)]. (3.4.15)

lx—zi>e
[ 4
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The whole right-hand side of (3.4.12) is independent of ¢. Hence, taking the limit
& — 0, we find

0, § dz f@ptz. 1y, = [de| 52 e, 05D + 5 55,00 T iz, 113,19

+ [ dz f(2) {fdx[W(x|z, p(x, t|y, t') — W(x|z, )p(z, t]y, )]} . (3.4.16)

Notice, however, that we use the definition

lim [ dxF(x,z)= fdx F(x, z) (3.4.17)

0 |r—zi>e

for a principal value integral of a function F(x, z). For (3.4.16) to have any meaning,
this integral should exist. Equation (3.4.1) defines W(x|z, t) only for x # z and
hence leaves open the possibility that it is infinite at x = z, as is indeed the case
for the Cauchy process, discussed in Sect. 3.3.1, for which

W(x|z,t) = l/[n(x — 2)]. (3.4.18)

However, if p(x, t|y, t") is continuous and once differentiable, then the principal
value integral exists. In the remainder of the book we shall not write this integral
explicitly as a principal value integral since one rarely considers the singular cases
for which it is necessary.

The final step now is to integrate by, parts. We find

s

de f@,p(z, 113, 1) = [dz f(z) [—2 5= Al 00z, 113, 1)
+ 2 2 az az B{/(Z, t)p(zs t|y9 ,)
+ [dx[W(z|x, )p(x, t|y, t') — W(x|z, t)p(z, t|y, )]
-+ surface terms. (3.4.19)

We have not specified the range of the integrals. Suppose the process is confined to
a region R with surface S. Then clearly,

p(x, t|z,t') = 0 unless both x and z € R. (3.4.20)
It is clear that by definition we have

W(x|z,t) = O unless both x and y € K. (3.4.21)
But the conditions on 4,(z, t) and B,,(z, ) can result in discontinuities in these func-
tions as defined by (3.4.2.3) since the conditional probability p(x, t + At|z, ') can

very reasonably change discontinuously as z crosses the boundary of R, reflecting
the fact that no transitions are allowed from outside R to inside R.
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In integrating by parts, we are forced to differentiate both 4, and B, and by our
reasoning above, one cannot assume that this is possible on the boundary of the
region. Hence, let us choose f(z) to be arbitrary but nonvanishing only in an ar-
bitrary region R’ entirely contained in R. We can then deduce that for all z in the
interior of R,

0.p(z, t|y,t') = -Z‘.aiz[A:(z, p(z, t]y, t')]

+ 2 2 aZ a [Bll(z’ t)P(z, t|y9 I)] (3422)

+ [ dx [W(zlx, Dp(x, ty, t') — W(x|z, )p(z, t]y, t)].

Surface terms do not arise, since they necessarily vanish.

This equation does not seem to have any agreed name in the literature. Since it
is purely a differential form of the Chapman-Kolmogorov equation, I propose to
call it the differential Chapman-Kolmogorov equation.

3.4.2 Status of the Differential Chapman-Kolmogorov Equation

From our derivation it is not clear to what extent solutions of the differential
Chapman-Kolmogorov equation are solutions of the Chapman-Kolmogorov equ-
ation itself or indeed, to what extent solutions exist. It is certainly true, however,
that a set of conditional probabilities which obey the Chapman-Kolmogorov
equation does generate a Markov process, in the sense that the joint probabilities
so generated satisfy all probability axioms.

It can be shown [3.3] that, under certain conditions, if we specify A(x, ¢), B(x, )
(which must be positive semi-definite), and W(x|y, t) (which must be non-negative),
that a non-negative solution to the differential Chapman-Kolmogorov equation
exists, and this solution also satisfies the Chapman-Kolmogorov equation. The
conditions to be satisfied are the initial condition,

p(z, t|y, 1) =8y — 2)

which follows from the definition of the conditional probability density, and any
appropriate boundary conditions. These are very difficult to specify in the full
equation, but in the case of the Fokker-Planck equation (Sect. 3.5.2) are given in
Chap. 5.

3.5 Interpretation of Conditions and Results

Each of the conditions (i), (ii), (iii) of Sect. 3.4 can now be seen to give rise to
a distinctive part of the equation, whose interpretation is rather straightforward.
We can identify three processes taking place, which are known as jumps, drift
and diffusion.
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3.5.1 Jump Processes: The Master Equation
We consider a case in which
A(z,t) = By(z,1) =0 (3.5.1)
so that we now have the Master equation:

0.p(z, ty, t") = [ dx [W(z|x, t)p(x, t|y, ') — W(x|z, )p(z, t|y, t)]. (3.5.2)

To first order in At we solve approximately, as follows. Notice that

Pz, t|y, 1) =8(y — 7). (3.5.3)
Hence,
p(z,t + At|y, 1) = 8(y — [l — [ dx W(x|y, )At] + W(z|y, )At. (3.5.4)

We see that for any At there is a finite probability, given by the coefficient of the
8(y — z) in (3.5.4), for the particle to stay at the original position y. The dis-
tribution of those particles which do not remain at y is given by W(z|y, t) after
appropriate normalisation. Thus, a typical path X(¢) will consist of sections of
straight lines X(¢) = constant, interspersed with discontinuous jumps whose dis-
tribution is given by W(z|y, t). For this reason, the process is known as a jump
process. The paths are discontinuous at discrete points.

In the case where the state space cdnsists of integers only, the Master equation
takes the form

0, P(n,t|n' t')=> [W(n|m,t)P(m,t|n',t") — W(m|n,t)P(n,t|n',t"). (3.5.5)

There is no longer any question that only jumps can occur, since only discrete values
of the state variable N(¢) are allowed. It is most important, however, to be aware
that a pure jump process can occur even though the variable X(¢) can take on a con-
tinuous range of variables.

3.5.2 Diffusion Processes—the Fokker-Planck Equation

If we assume the quantities W(z|x, t) to be zero, the differential Chapman-Kolmo-
gorov equation reduces to the Fokker-Planck equation:

‘iliz_’g_l%_') —Z 7,4z, 0p(z, 113, 1]

3 5255, Bul@ 0P . 13, ) (3.56)

and the corresponding process is known mathematically as a diffusion process. The
vector A(z, t) is known as the drift vector and the matrix B(z, t) as the diffusion
matrix. The diffusion matrix is positive semidefinite and symmetric as a result of its
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definition in (3.4.3). It is easy to see that from the definition of W(x|z, ) (3.4.1),
the requirement (3.3.1) for continuity of the sample paths is satisfied if W(x|z, t) is
zero. Hence, the Fokker-Planck equation describes a process in which X(¢) has con-
tinuous sample paths. In fact, we can heuristically give a much more definite des-
cription of the process. Let us consider computing p(z, t + At|y, t), given that

pz, t|y, 1) =8z —y). (3.5.7)

For a small At, the solution of the Fokker-Planck equation will still be on the
whole sharply peaked, and hence derivatives of 4,(z, t) and B,,(z, t) will be negli-
gible compared to those of p. We are thus reduced to solving, approximately
3
op(z, ty,t) op(z, t|y, t') 1 a’p(z, t|y, t')
at - 214{(}’9 t) aZ, + % 2 Blj(y’ t) aZ‘aZ/ )
(3.5.8)

where we have also neglected the time dependence of 4, and B, for small ¢+ — ¢'.
Equation (3.5.8) can now be solved, subject to the initial condition (3.5.7), and
we get

p(z, t + At]y, t) = 2r)~V2{det[B(y, D]} /*[A1]"12

X exp|— % [z —y — A(yv t)At]T[.B(.Z,tt)]—l[z -y - A(y, t)At] , (359)

that is, a Gaussian distribution with variance matrix B(y, t)and meany + A(y, t)At.
We get the picture of the system moving with a systematic drift, whose velocity is
A(y, t), on which is superimposed a Gaussian fluctuation with covariance matrix
B(y, t)At, that is, we can write

y(t 4+ Ar) = y(t) + A(y(2), t)At + n(t)Ae''?, (3.5.10)
where {((¢)) =0 (3.5.11)
()™ = B(y, 1) . (3.5.12)

It is easy to see that this picture gives

i) sample paths which are always continuous — for, clearly, as At — 0, y(t + At)
— y(1);

ii) sample paths which are nowhere diffierentiable, because of the As'/? occurring in
(3.5.10).

We shall see later, in Chap. 4 that the heuristic picture of (3.5.10) can be made
much more precise and leads to the concept of the stochastic differential equation.

3.5.3 Deterministic Processes—Liouville’s Equation

It is possible that in the differential Chapman-Kolmogorov equation (3.4.22) only
the first term is nonzero. so we are led to the special case of a Liouville equation:
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|

op(z, t|y, t' 0 .
P 1) - 52 2 4, 0pta, 1, 1) (3519

which occurs in classical mechanics. This equation describes a completely deter-
ministic motion, i.e., if x(, t) is the solution of the ordinary differential equation

d"(’)_A[ ), 1] (3.5.14)

with x(, t') = y, (3.5.15)

then the solution to (3.5.13) with initial condition

p(z, U]y, t)=08(z— ) (3.5.16)
is
p(z, t|y, ') =3[z — x(y,1)]. (3.5.17)
The proof of this assertion is best obtained by direct substituion. For
—Zga— {4z, 03[z — x(y, D]} (3.5.18)
] 2{
]
= =25, {Alx(y, 1), 11z — x(y, )]} (3.5.19)
[} Z,
0 s
= -5 [Alx(r, 0. 115281z — x(r. 1)) (3.5.20)
and
d
aa—,ﬁlz —x(y, )] = —2‘ 5z, Oz — =, 1= "‘(” . 1) (3.5.21)

and by use of (3.5.14), we see that (3.5.20,21) are equal. Thus, if the particle is in a
well-defined initial position y at time ¢’, it stays on the trajectory obtained by solving
the ordinary differential equation (3.5.14).

Hence, deterministic motion, as defined by a first-order differential equation of
the form (3.5.14), is an elementary form of Markov process. The solution (3.5.17)
is, of course, merely a special case of the kind of process approximated by equations
like (3.5.9) in which the Gaussian part is zero.

3.5.4 General Processes

In general, none of the quantities in A(z, t), B(z,t) and W(x|z, t) need vanish, and
in this case we obtain a process whose sample paths are as illustrated in Fig. 3.2,
i.e., a piecewise continuous path made up of pieces which correspond to a diffusion
process with a nonzero drift, onto which is superimposed a fluctuating part.
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Fig. 3.2. Illustration of a sample path
of a general Markov process, in which
drift, diffusion and jumps exist

Z(t)

Z(t)

Fig. 3.3. Sample path of a Markov
process with only drift and jumps

t

It is also possible that A(z, t) is nonzero, but B(z, t) is zero and here the sample
paths are, as in Fig. 3.3, composed of pieces of smooth curve [solutions of (3.5.14)]
with discontinuities superimposed. This is very like the picture one would expect
in a dilute gas where the particles move freely between collisions which cause an
instantaneous change in momentum, though not position.

3.6 Equations for Time Development in Initial Time—Backward
Equations

We can derive much more simply than in Sect. 3.4, some equations which give the
time development with respect to the initial variables y, ¢’ of p(x, |y, t').
We consider

1 ,
lim = [p(x, 11y, t' + At') — p(x, ]y, 1] (3.6.)
Arr—0 Al

= lim Zl—t,j'dz p(z, t' + At |y, t)p(x, t|y, ' + At')

At'—0

— p(x, t|z, 1" + At')] (3.6.2)

by use of the Chapman-Kolmogrov equation in the second term and by noting
that the first term gives 1 X p(x, t|y, t' + At').
The assumptions that are necessary are now the existence of all relevant deriva-
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tives, and that p(x, t|y, t') is continuous and bounded in x,,t' for some range
t —t' > 8 > 0. We may then write

= lim 2 [ dz pla, 1 + AL Ly, ) [plx, 113, 1) — pl, 1], 1)) (3.63)

Ar'—0

We now proceed using similar techniques to those used in Sect. 3.4.1 and finally
derive

opCetlyat) NPty 1) 1 yZe. 1y 1)
b R A e R BT,

+ [ dz W(zly, t) [p(x, t]y, ') — p(x, t|z, 1] (3.6.4)

which will be called the backward differential Chapman-Kolmogorov equation. In
a mathematical sense, it is better defined than the corresponding forward equation
(3.4.22). The appropriate initial condition for both equation is

p(x, t|y,t) = 8(x — y) for all ¢, (3.6.5)

representing the obvious fact that if the particle is at y at time ¢, the probability
density for finding it at x at the same time is 6(x—yp).

The forward and the backward equations are equivalent to each other. For,
solutions of the forward equation, subject to the initial condition (3.6.5) [or 3.5.4],
and any appropriate boundary conditions, yield solutions of the Chapman-
Kolmogorov equation, as noted in Secl. 3.4.2. But these have, just been shown to
yield the backward equation. (The relation between appropriate boundary condi-
tions for the Fokker-Planck equations is dealt with in Sect. 5.2.1,4). The basic dif-
ference is which set of variables is held fixed. In the case of the forward equation,
we hold (p, t) fixed, and solutions exist for ¢ > ¢/, so that (3.6.5) is an initial condi-
tion for the forward equation. For the backward equation, solutions exist for t' < ¢,
so that since the backward equation expresses development in ¢’, (3.6.5) is really
better termed final condition in this case.

Since they are equivalent, the forward and backward equations are both useful.
The forward equation gives more directly the values of measurable quantities as a
function of the observed time, ¢, and tends to be used more commonly in applica-
tions. The backward equation finds most application in the study of first passage
time or exit problems, in which we find the probability that a particle leaves a
region in a given time.

3.7 Stationary and Homogeneous Markov Processes

In Sect. 1.4.3 we met the concept of a stationary process, which represents the
stochastic motion of a system which has settled down to a steady state, and whose
stochastic properties are independent of when they are measured. Stationarity
can be defined in various degrees, but we shall reserve the term *‘stationary process”
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for a strict definition, namely, a stochastic process X(¢) is stationary if X(¢) and the
process X(¢ + ¢) have the same statistics for any ¢. This is equivalent to saying
that all joint probability densities satisfy time translation invariance, i.e.,

p(xlv tl;xb tz? 13, t3; ; xm tn)
=plx, t, + &%t + & X3, 83+ €5 oas Xpy by + ) 3.7.1)

and hence such probabilities are only functions of the time differences, ¢, — ¢;. In
particular, the one-time probability is independent of time and can be simply
written as

ps(x) g (3.7.2)
and the two-time joint probability as
ps(x1, 1) — 135 X5, 0). (3.7.3)

Finally, the conditional probability can also be written as
Ps(x1; ty — 1] x5, 0). (3.7.9)

For a Markov process, since all joint probabilities can be written as products of the
two-time conditional probability and the one-time probability, a necessary and
sufficient condition for stationarity is the ability to write the one and two-time
probabilities in the forms given in (3.7.1-3).

3.7.1 Ergodic Properties

If we have a stationary process, it is reasonable to expect that average measurements
could be constructed by taking values of the variable x at successive times, and
averaging various functions of these. This is effectively a belief that the law of
large numbers (as explained in Sect. 2.5.2) applies to the variables defined by
successive measurements in a stochastic process.

Let us define the variable X(T") by

XT) = % j:rdt x(1), (3.7.5)

where x(¢) is a stationary process, and consider the limit T— co. This represents a
possible model of measurement of the mean by averaging over all times. Clearly

X)) = (% (3.7.6)

We now calculate the variance of X(7). Thus,

TPy = g | ] dnds Cx(e)x() (3.7.7)
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and if the process is stationary,
x(t) x(12)) = R(ty — 1) + {xp?, (3.7.8)

where R is the two-time correlation function. Hence,

2T
TP — (0 = g | de ROQT — [2]) (3.7.8)
-2T
where the last factor follows by changing variables to

T=184 — 1y (3.7.9)
t= I]

and integrating .
The left-hand side is now the variance of X(T) and one can show that under

certain conditions, this vanishes as T — co. Most straightforwardly, all we require
is that

lim - }sz( — 'ﬂ)R(r) -0 (3.7.10)
ra T 3 2T A
which is a little obscure. However, it is clear that a sufficient condition for this

limit to be zero is for

Tdt |R@)| < oo, -~ G.7.11)

in which case, we simply require that the correlation function {x(t,), x(;)) should
tend to zero sufficiently rapidly as |#, —¢;| — oo. In cases of interest it is frequently
found that the asymptotic behavior of R(7) is

R(t) ~ Re{A4 exp (—1/7.)} , (3.7.12)

where 7, is a (possibly complex) parameter known as the correlation time. Clearly
the criterion of (3.7.11) is satisfied, and we find in this case that the variance in X(T")
approaches zero so that using (3.7.6) and (2.9.4), we may write

ms-lim X(T) = (x), . (3.7.13)

This means that the averaging procedure (3.7.5) is indeed valid. It is not difficult to
extend the result to an average of an infinite set of measurements at discrete times
t, = t, +nAt.

Other ergodic hypotheses can easily be stated, and the two quantities that are of
most interest are the autocorrelation function and the distribution function.
As already mentioned in Sect. 1.4.2, the most natural way of measuring an auto-
correlation function is through the definition
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l T
G(r, T) = T [ dt x(t)x(t + 1) (3.7.19)
0
and we can rather easily carry through similar reasoning to show that
ms-lim G(z, T) = {x()x(t + 1)), , (3.7.15)
T—oo
provided the following condition is satisfied. Namely, define p(z, 1) by

(@ + 2+ x(t + Dx@ + 1)x(8))s = p(z, A) + {x(t + 1)x(2))2. (3.7.16)

Then we require
L]

tim . f (1 _ '-’1—') (, )di = 0 (.7.17)
roa 2T 2T % : -

-2T

We can see that this means that for sufficiently large A, the four-time average
(3.7.16) factorises into a product of two-time averages, and that the “error term”
p(t, 4) must vanish sufficiently rapidly for A — co. Exponential behaviour, such
as given in (3.7.12) is sufficient, and usually found.

We similarly find that the spectrum, given by the Fourier transform

S(w) = 2in I,, et G(1)dr (3.7.18)

as in Sect. 1.4, is also given by the procedure

2
S(w) = lim .

1 |™ .
im 21t_T| ! dt e iorx(t)

(3.7.19)

Finally, the practical method of measuring the distribution function is to con-
sider an interval (x,, x,) and measure x(¢) repeatedly to determine whether it is in

this range or not. This gives a measure of J‘z dx p,(x). Essentially, we are then meas-

1
uring the time average value of the function y(x) defined by

xx)=1 X< x<x (3.7.20)
=0 otherwise,

and we adapt the method of proving the ergodicity of {x) to find that the distri-
bution is ergodic provided

2T

tim 5 § et = $50) T oo J ax ot 1,0 = po) 0. 3720

2T

The most obvious sufficient condition here is that
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lim p(x, 7| x', 0) = p,(x) (3.7.22)

oo
and that this limit is approached sufficiently rapidly. In practice, an exponential
approach is frequently found and this is, as in the case of the mean, quite sufficiently
rapid.

This condition is, in fact, sufficient for ergodicity of the mean and autocorrela-
tion function for a Markov process, since all means can be expressed in terms of
conditional probabilities and the sufficiently rapid achievement of the limit (3.7.22)
can be readily seen to be sufficient to guarantee both (3.7.17) and (3.7.10). We will
call a Markov process simply “ergodic’ if this rather strong condition is satisfied.

3.7.2 Homogeneous Processes

If the condition (3.7.22) is satisfied for a stationary Markov process, then we clearly
have a way of constructing from the stationary Markov process a nonstationary
process whose limit as time becomes large is the stationary process. We simply
define the process for

Lt >t (3.7.23)
by

p(x, t) = p,(x,t| x5, t)  and (3.7.24)

plx, t|x',t") = p(x, t|x', 1) s (3.7.25)

and all other joint probabilities are obtained from these in the Usual manner for a
Markov process. Clearly, if (3.7.22) is satisfied, we find thatas t — co oras ¢, — — oo,

p(x) t) - pa(x)

and all other probabilities become stationary because the conditional probability
is stationary. Such a process is known as a homogeneous process.

The physical interpretation is rather obvious. We have a stochastic system
whose variable x is by some external agency fixed to have a value x, at time ¢,. It
then evolves back to a stationary system with the passage of time. This is how many
stationary systems are created in practice.

From the point of view of the differential Chapman-Kolmogorov equation, we
will find that the stationary distribution function p,(x) is a solution of the stationary
differential Chapman-Kolmogorov equation, which takes the form

2
0= — S 5E @Rty O] + 5 5 5257 1By@pCa 11,1
+ [ dx (@1 2)p(x, 1, 1) — Wex | Dp(, 1]y, 0], (326

where we have used the fact that the process is homogeneous to note that 4, B
and W, as defined in (3.4.1-3), are independent of ¢. This is an alternative definition
of a homogeneous process.
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3.7.3 Approach to a Stationary Process

A converse problem also exists. Suppose 4, B and W are independent of time and
ps(2) satisfies (3.7.26). Under what conditions does a solution of the differential
Chapman-Kolmogorov equation approach the stationary solution p,(z)?

There does not appear to be a complete answer to this problem. However, we
can give a reasonably good picture as follows. We define a Lyapunov functional
K of any two solutions p, and p, of the differential Chapman-Kolgomorov equation
by

K = [ dx p\(x, 1) log [pi(, 1)/pu(x, 1)] (3.7.27)

and assume for the moment that neither p, nor p, are zero anywhere. We will now
show that K is always positive and dK/dt is always negative.
Firstly, noting that both p,(x, t) and p,(x, t) are normalised to one, we write

K[py, p2, t] = I dx p\(x, t) {log [pi(x, t)/px(x, t)]
+ pZ(x’ t)/pl(x’ t) - l} (3728)

and use the inequality valid for all z > 0,
—logz4+2z—-12>20, (3.7.29)

to show that K > 0.
Let us now show that dK/dt < 0. We can write (using an abbreviated notation)

dK ) )
=1 dx{% [log py 4+ 1 — log p] — %[Pl/l’z] : (3.7.30)

We now calculate one by one the contribution to dK/dt from drift, diffusion, and
jump terms in the differential Chapman-Kolmogorov equation:

d
(), = 5 s [~ o (ulp) + 1135 (4ip)

+ (p1/p2) éa—x‘ (Atpz)} (3.7.31)

which can be rearranged to give
dK 9
(E) arier 2 f d‘a_x,[— A:py log (pi/p2)]. (3.7.32)
Similarly, we may calculate
dK 1 92
(E) diff - 7 g -“ dx{[log (pl/pZ) + l]‘a_‘x—;a—xj (Bljpl)

2
— (plp2) ax%, (Bup2)] (3.7.33)
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and after some rearranging we may write

(‘%{) are "% > [ dxpB, Iaix, [log (Pl/Pz)]} {aixl flog (p,/p,_)]]

[¥)
+ L spae L[5 B, log (pufpy) 37.34
2 7 0x,0x, P1 54 108 (P1/P2) | - (3.7.34)

Finally, we may calculate the jump contribution similarly:

(%) s [asas (w1 20px', ) — W' Ipte, )

X {log [pi(x, t)/pa(x, t)] + 1}
— [W(x | x")pu(x', t) — W(x' | x)pa(x, 1)) pi(x, t)[pa(x, 1) (3.7.35)

and after some rearrangement,

(‘ji_lt{), . [ dxdx’ W(x|x') {ps(x', )¢’ log [¢/¢'] — ¢ + 41}, (3.7.36)
where
¢ = pi(x, t)[pa(x, 1) (3.7.37)

and ¢’ is similarly defined in terms of‘x'.

We now consider the simplest case. Suppose a stationary %olution p,(x) exists
which is nonzero everywhere, except at infinity, where it and its first derivative
vanish. Then we may choose p,(x,t) = p,(x). The contributions to dK/dt from
(3.7.32) and the second term in (3.7.34) can be integrated to give surface terms
which vanish at infinity so that we find

(“;—’f)d =0 (3.7.382)

(%) <o (3.7.38b)

(‘%) <0, (3.7.38¢)
jump

where the last inequality comes by setting z = ¢'¢’ in (3.7.29).

We must now consider under what situations the equalities in (3.7.38) are ac-
tually achieved. Inspection of (3.7.36) shows that this term will be zero if and only
if ¢ = ¢’ for almost all x and x’ which are such that W(x|x') # 0. Thus, if
W(x|x') is never zero, i.e., if transitions can take place in both directions between
any pair of states, the vanishing of the jump contribution implies that ¢(x) is
independent of x, i.e.,
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pi(x, t)/p,(x) = constant. (3.7.39)

The constant must equal one since p,(x, t) and p,(x) are both normalised.

The term arising from diffusion will be strictly negative if B, is almost every-
where positive definite. Hence, we have now shown that under rather strong condi-
tions, namely,

ps(x) # 0 with probability 1
W(x|x") # 0 with probability 1, (3.7.40)
B, (x) positive definite with probability 1,

that any solution of "the differential Chapman-Kolmogorov equation approaches
the stationary solution p,(x) at t — oo.
The result fails in two basic kinds of systems.

a) Disconnected State Space

The result is best illustrated when 4, and B, vanish, so we have a pure jump system.
Suppose the space divides into two regions R, and R, such that transitions from R,
to R, and back are impossible; hence, W(x|x') = 0 if x and x’ are not both in
R, or R,. Then it is possible to have dK/dt = 0 if

p,(x, t) = ﬂ.,p,(x) X € R| (3.7.41)
= Ay ps(x) xXE R,

so that there is no unique stationary distribution. The two regions are disconnected
and separate stochastic processes take place in each, and in each of these, there is a
unique stationary solution. The relative probability of being R, or R, is not changed
by the process.

A similar result holds, in general, if as well we have B,, and 4, vanishing
on the boundary between R, and R,.

b) p, (x) Vanishes in Some Definite Region
If we have

ps(x) =0 x € R, (3.7.42)
+ Q X € Rz

and again 4, and B, vanish, then it follows that, since p,(x) satisfies the stationary
equation (3.7.26),

Wx|y)=0 xXE R,y €ER, (3.7.43)

In other words, no transitions are possible from the region R, where the stationary
distribution is positive to R,, where the stationary distribution vanishes.



64 3. Markov Processes

3.7.4 Autocorrelation Function for Markov Processes

For any Markov process, we can write a very elegant formula for the autocorrela-
tion function. We define

<X(t)|[x09 IO]> = I dx x p(x’ tle’ to) ’ (3.7.44)
then the autocorrelation matrix

(X()X(t)™y = [ dx dx, xxIp(x, t; x,, to) (3.7.45)
= J‘ dx, (X(t)|[x0, to]> X5 p(x0, to) . (3.7.46)

Thus we see that (3.7.44) defines the mean of X(¢) under the condition that X had
the vahe x, at time ¢,, and (3.7.46) tells us that the autocorrelation matrix is ob-
tained by averaging this conditional average (multiplied by x7) at time #,. These
results are true by definition for any stochastic process.

In a Markov process we have, however, a unique conditional probability which
determines the whole process. Thus, for a Markov process, we can state that
(X(t)|[xo, t,]) is a uniquely defined quantity, since the knowledge of x, at time ¢,
completely determines the future of the process. The most notable use of this
property is in the computation of the stationary autocorrelation function. To
illustrate how this uniqueness is important, let us consider a non-Markov stationary
process with joint probabilities

p,(x,, tl s X2, tz; vee Xy t,,), ‘e (3.7.47)

which, of course, depend only on time differences. Let us now create a correspond-
ing nonstationary process by selecting only sample paths which pass through the
point x = a at time ¢ = 0. Thus, we define

pl(xl9 tl > X2, ta; ... Xy, tn) = ps(xl’ tl’ X2 tZ; con Xpy tnla’ 0)' (3'7'48)
Then for this process we note that
<X(t)|[x09 tO])t = I dx xps(x9 tlxoa tO; a, 0) (3'7'49)

which contains a dependence on a symbolised by the subscript @ on the average
bracket. If the original stationary process possesses appropriate ergodic properties,
then

lim p,(x, t + t|xo, to + 7; @,0) = p,(x, 1 — to|x,, 0) (3.7.50)

10 that we will also have a stationary conditional average of x

CX(®)|[x0, to])s = lim (X(1 + 7)[[x0, to + 7D (3.7.51)

and the stationary autocorrelation matrix is given by
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XO)X(t), = I dx, x5(X(2) | [xo, to]) s Ps(X0) (3.7.52)
= le (X1 + )X, + 1)),
= IIT I dxo IE<X(1+ T)l[an ’0 + t])apa(xo’ to + T) . (3753)

However, when the process is Markovian, this cumbersome limiting procedure is
not necessary since

Markov == (X(2)|[x0, to]>, = {X(2)|[x0s to])«
= (X(2)|[xo, to]) - (3.7.54)

Equation(3.7.46) is 4 regression theorem when applied to a Markov process and is
the basis of a more powerful regression theorem for linear systems. By this we mean
systems such that a linear equation of motion exists for the means, i.e.,

d{X(1)|[x0, to]>/dt = — ALX(2)|[xo, to]) (3.7.55)

which is very often the case in systems of practical interest, either as an exact result
or as an approximation. The initial conditions for (3.7.55) are clearly

(X(to) | [xo, to]) = x, . (3.7.56)
Then from (3.7.50, 59)

& XOX (1 = — AKX (3.7.57)

with initial conditions {X(#,)X(#,)T). The time correlation matrix

XX (1)) — (X)X ()™ = <X(1), X(1)™> (3.7.58)

obviously obeys the same equation, with the initial condition given by the covari-
ance matrix at time f,. In a stationary system, we have the result that if G(z) is the
stationary time correlation function and o the stationary covariance matrix, then

dG(t)/dt = —A G(t) (3.7.59)
and

G(0)=o0 (3.7.60)
or

G(t) = exp[—At]o (3.7.61)

which is the regression theorem in its simplest form. We again stress that it is valid
for the Markov processes in which the mean values obey linear evolution equations
like (3.7.55).
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For non-Markov processes there is no simple procedure. We must carry out the
complicated procedure implicit in (3.7.53).

3.8 Examples of Markov Processes

We present here for reference some fundamental solutions of certain cases of the
differential Chapman-Kolmogorov equation. These will have a wide application
throughout the remainder of this book.

3.8.1 The Wiener Process
This takes its name from N. Wiener who studied it extensively. From the point of
view of this chapter, it is the solution of the Fokker-Planck equation as discussed

in Sect.3.5.2, in which there is only one variable W(t), the drift coefficient is zero and
the diffusion coefficient is 1. Thus, the Fokker-Planck equation for this case is

3 1 8
37 PO 1 Wo, 10) = = 55 p(w, 1| Wo, 1) . (3.8.1)

Utilising the initial condition
p(w, to] wo, t) = 8(w — wo) . (3.8.2)
on the conditional probability, we solve (3.8.1) by use of the characteristic function
#(s, t) = [ dw p(w, t|wo, to) exp (isw) (3.8.3)

which satisfies

%o sy (3.8.4)
so that
85, 1) = exp| — 4 5t — 19|05, 10 (38

From (3.8.2), the initial condition is
(s, to) = exp (iswo)

so that

8(s, 1) = exp [iswo — 35t — zo)]. (3.8.6)
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Performing the Fourier inversion, we have the solution to (3.8.1):
p(w, tlwo, to) = [2m(t — £,)]7"/% exp [—(w — wo)*/2(t — 1,)] . (3.8.7)
This represents a Gaussian, with

(W) = w,

(3.8.8)
AW(E) — wo> =t — 1, (3.8.9)
so that an initially sharp distribution spreads in time, as graphed in Fig.3.4.
L]
2
£
-
2
a
N Fig. 3.4. Wiener process: spreading of an
initially sharp distribution p(w, t|w,, t,)
—7 L N with increasing time ¢ — ¢,
wO

A multivariate Wiener process can be defined as

W(t) = [Wl(t), W2(t)9 LR Wn(t)]

,(3.8.10)
which satisfies the multivariable Fokker-Planck equation
0 1 02

Ep(w, t|"’o, to) = 7 ‘2 mp(wy t|wo, to) (381 l)
whose solution is

pw, t|wo , ) = [2n(t — £,)]™"* exp [— (W — wo)* /2t — 1o)], (3.8.12)
a multivariate Gaussian with

CH(E)) = w, (3.8.13)
and

AWi(t) — wold [W(1) — wo,l> = (t — to)d,, . (3.8.14)
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The one-variable Wiener process is often simply called Brownian motion, since the
Wiener process equation (3.8.1) is exactly the same as the differential equation of
diffusion, shown by Einstein to be obeyed by Brownian motion, as we noted in
Sect. 1.2. The terminology is, however, not universal.

Points of note concerning the Wiener process are:

a) Irregularity of Sample Paths

Although the mean value of W(t)is zero, the mean square becomes infinite as t —
co. This means that the sample paths of W(t) are very variable, indeed surprisingly
so. In Fig. 3.5, we have given a few different sample paths with the same initial point
to illustrate the extreme non-reproducibility of the paths.

b) Non-differentiability of Sample Paths
The Wiener process is a diffusion process and hence the sample paths of W(t) are
continuous. However, they are not differentiable. Consider

Prob {[[W(t + k) — W(D)]/h| > k} . (3.8.15)

From the solution for the conditional probability, this probability is
2 T dw(2mh)~'%exp (—w?/2h) (3.8.16)
kh

and in the limit as A — O this is one. This means that no matter what value of k
choose, |[W(t + h) — W(1)]/h| is almost certain to be greater than this, i.e., the
derivative at any point is almost certainly infinite. This is in agreement with the
similar intuitive picture presented in Sect.3.5.2 and the simlated paths given in
Fig. 3.5 illustrate in point dramatically. This corresponds, of course, to the well-
known experimental fact that the Brownian particles have an exceedingly irregular
motion. However, this clearly an idealisation, since if W(¢) represents the position

‘l‘\ (4} f’
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Fig. 3.5. Three simulated sample paths of the Wiener process, illustrating their great variability
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of the Brownian particle, this means that its speed is almost certainly infinite. The
Ornstein-Uhlenbeck process is a more realistic model of Brownian motion (Sect.
3.8.4).

c) Independence of Increment
The Wiener process is fundamental to the study of diffusion processes, and by
means of stochastic differential equations, we can express any diffusion process in
terms of the Wiener process.

Of particular importance is the statistical independence of the increments of
W(t). More precisely, since the Wiener process is a Markov process, the joint proba-
bility density can be written

P(Wm tn; Wn—h tn—;'; wn—27 tu—2; v ; WO’ tO)

n-1
= '=1]0 p(wl+h tl+l | Wi, tt)P(Wo, tO) ’ (3'8'17)
and using the explicit form of the conditional probabilities (3.8.7), we see that

P(Wm tn; Wa_1, tu—l; Wp_2, tu—z; -'-; w09 to)

n—1
= ‘IJO {2n(ti1 — V2 exp [—(Wipr — w2t — )]} p(wo, 1) . (3.8.18)
If we define the variables

AW, = W(t) — W(t._) (3.8.19)
At,=t,—t,,, (3.8.20)
then the joint probability density for the AW, is

P(AW,; AW,_y 5 Aw,_z; ... Awy; wy)
=TT {2rAL) 12 exp (— Aw?[2A1)} p(wo, 1) (3.8.21)
i=1

which shows from the definition of statistical independence given in Sect.2.3.4,
that the variables AW, are independent of each other and of W(z,).

The aspect of having independent increments AW, is very important in the
definition of stochastic integration which is carried out in Sect. 4.2.

d) Autocorrelation Functions
A quantity of great interest is the autocorrelation function, already discussed in
Sects. 1.4.2 and 3.7.4. The formal definition is

CHOYW(S) | [wo, to]) = [ dwidws wiwap(wy, t5 Wa, 5| Wo, L), (3.8.22)

which is the mean product of W(¢) and W(s) on the condition that the initial value is
W(t,) = wo, and we can see, assuming ¢ > s, that
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(WYW(s) | [wo, to]) = (W) — WSIW(s) + (WP - (3.8.23)

Using the independence of increments, the first average is zero and the second is
given by (3.8.9) so that we have, in general,

CW(OW(s) | [wo, to]) = min(t — to, s — to) + w} (3.8.29)

which is correct for t > sand t < s.

3.8.2 The Random Walk in One Dimension

This is a very famous problem, which is now considered classical. A man moves
along a line, taking, at random, steps to the left or the right with equal probability.
The steps are of length / so that his position can take on only the value n/, where n
is integral. We want to know the probability that he reaches a given point a
distance nl from the origin after a given elapsed time.

The problem can be defined in two ways. The first, which is more traditional, is
to allow the walker to take steps at times Nt (N integral) at which times he must
step either left or right, with equal probability. The second is to allow the walker to
take steps left or right with a probability per unit time d which means that the
walker waits at each point for a variable time. The second method is describable

by a Master equation. ‘¥
To do a Master equation treatment of the problem, we con51der that the transi-
tion probability per unit time is given by the form

Wn+ 1|nt) = Wn — 1|n, t) = d; (3.8.25)

otherwise, W(n|m, t) = 0 so that, according to Sect.3.5.1, the Master equation
for the man to be at the position nl/, given that he started at n’l, is
0,P(n, t|n',t"y =d[P(n+ 1,t|n',t") + P(n — 1, ¢t|n', t')
— 2P(n, t|n't"))]. (3.8.26)
The more classical form of the random walk does not assume that the man makes
his jump to the left or right according to a Master equaton, but that he jumps left
or right with equal probability at times Nz, so that time is a discrete variable. In
this case, we can write
P(n, (N + Dz|n’, N't) = 4 [P(n + 1, Nz|n’, N'7)
+ P(n — 1, Nt|n’, N'7)] . (3.8.27)

If 7 is small, we can view (3.8.26, 27) as approximations to each other by writing

P(n, (N + Dt|n’, N't) = P(n, Nt|n', N't) 4 16,P(n, t|n’, t’) (3.8.28)
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with t = N7, ' = N't and d = 477!, so that the transition probability per unit
time in the Master equation model corresponds to half of the inverse waiting time

7 in the discrete time model.
Both systems can be easily solved by introducing the characteristic function

G(s, t) = (e'™) = "2 P(n, t|n', t")e!" (3.8.29)
in which case the Master equation gives

0,G(s, t) = d(e'* + e~ir — 2)G(s, t) (3.8.30)
and the discrete time equation becomes

G(s, (N4 D7) = i(e'* + e™i)G(s, N7) . (3.8.31)

Assuming the man starts at the origin n’ = 0 at time ¢’ = 0, we find

G(s, 00 =1 (3.8.32)
in both cases, so that the solution to (3.8.30) is

Gi(s,t) = exp [(e** + e — 2)id], (3.8.33)
and to (3.8.31)

G,(s, N7) = [§(e'* +e i)™ (3.8.34)

which can be written
dt i -1 N
Gy(s, t) =|1 + N (e +et*—2)f . (3.8.35)
Using the usual exponential limit

lim (1 + %) Y (3.8.36)

N—oo

we see that, provided s is sufficently small

lim Gy(s, 1) = Gi(s, 1) (3.8.37)

which, by the properties of the characteristic function (v) in Sect.2.6, means the
probability distributions approach each other.

The appropriate probability distributions can be obtained by expanding G,(s, N7)
and Gy(s, t) in powers of exp (is); we find

Py(n, 1|0, 0) = e~2*] (4td) (3.8.38)
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Py(n, Nz|0,0) = (})NN![(%’) ! (W) !]_'. (3.8.39)

The discrete time distribution is also known as the Bernoulli distribution; it gives
the probability of a total of n heads in tossing an unbiased coin N times.

The limit of continuous space is also of interest. If we set the distance travelled
as

x =nl (3.8.40)
so that the characteristic function of the distribution of x is
B1(s, 1) = ey = G,(Is, t) expl(e'” + e~ — 2)d]. (3.8.41)

then the limit of infinitesimally small steps / — 0 is

$i(s, t) — exp (—s*D), (3.8.42)
where D = lim (/%d). (3.8.43)
-0

This is the characteristic function of a Gaussian (Sect.2.8.1) of the form
p(x, t]0, 0) = (4nDt)~''2 exp (—x*/4Dt) (3.8.44)
§

and is of course the distribution for the Wiener process (Sgct.3.8.1) or Brownian

motion, as mentioned in Sect.1.2. Thus, the Wiener process can be regarded as the

limit of a continuous time random walk in the limit of infinitesimally small step size.
The limit

[0, 70, with D= lim (1) (3.8.45)
1-0

of the discrete time random walk gives the same result. From this form, we see
clearly the expression of D as the mean square distance travelled per unit time.

We can also see more directly that expanding the right-hand side of (3.8.26)
as a function of x up to second order in / gives

8.p(x, 1|0, 0) = (1d)d2p(x, t|0, 0) . (3.8.46)

The three processes are thus intimately connected with each other at two levels,
namely, under the limits considered, the stochastic equations approach each other
and under those same limits, the solutions to these equations approach each
other. These limits are exactly those used by Einstein. Comparison with Sect.1.2
shows that he modelled Brownian motion by a discrete time and space random
walk, but nevertheless, derived the Wiener process model by expanding the equa-
tions for time development of the distribution function.
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The limit results of this section are a slightly more rigorous version of Einstein’s
method. There are generalisations of these results to less specialised situations and it
is a fair statement to make that almost any jump process has some kind of limit
which is a diffusion process. However, the precise limits are not always so simple,
and there are limits in which certain jump processes become deterministic and
are governed by Liouville’s equation (Sect.3.5.3) rather than the full Fokker-Planck
equation. These results are presented in Sect.7.2.

3.8.3 Poisson Process

We have already noted the Poisson process in Sect.l.4.1. The process in which
electrons arrive at an anode or customers arrive at a shop with a probability per
unit time d of arriving, is governed by the Master equation for which

W+ 1int)=d,; (3.8.47)
otherwise,
Wn|m,t)=0. (3.8.48)

This Master equation becomes
0.P(n, t|n',t"y =d[P(n — 1,¢t|n',t') — P(n, t|n', t')] (3.8.49)

and by comparison with (3.8.26) also represents a “‘one-sided” random walk, in
which the walker steps to the right only with probability per unit time equal to d.
The characteristic function equation is similar to (3.8.30):

9,G(s, t) = d[exp (is) — 1]G(s, t) (3.8.50)
with the solution
G(s, t) = exp {td[exp (is) — 1] (3.8.51)

for the initial condition that there are initially no customers (or electrons) at time
t = 0, yielding

P(n, t|0,0) = exp (— td)(zd)n!, (3.8.52)
a Poisson distribution with mean given by

(N(t)) =1td. (3.8.53)
In contrast to the random walk, the only limit that exists is / — 0, with

dl=v (3.8.54)
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held fixed and the limiting characteristic function is
lim {exp [td(e'"* — 1)]} = exp (itvs) (3.8.55)
1-0

with the solution
p(x, t]0,0) = d(x — vt). (3.8.56)

We also see that in this limit, we would obtain from the Master equation (3.8.49)
Liouville’s equation, whose solution would be the deterministic motion we have
derived.

We can do a slightly more refined analysis. We expand the characteristic func-
tion up to second order in s in the exponent and find

#(s, t) = G(ls, t) = exp [t(ivs — s*D/2)] (3.8.57)
where, as in the previous section,
D=0P_d.

This is the characteristic function of a Gaussian with variance Dt and mean vt,
so that we now have

p(x, t]0,0) = (2rnDt)~ "2 exp [— (x — vt)*/2Dt] . (3.8.58)
It is also clear that this solution is #he sclution of

3,p(x, 110, 0) = —v 3, p(x, 1]0,0) + $D 32p(x, /0,0 (3.8.59)
which is obtained by expanding the Master equation (3.8.49) to order /2, by writing

P(n —1,¢|0,0) =d p(x — 1,¢]0,0)
= dp(x,t0,0) — lda,p(x, ]0,0) + +/2d32p(x, t|0,0). (3.8.60)

However, this is an approximation or an expansion and not a limit. The limit / — 0
gives Liouville’s equation with the purely deterministic solution (3.8.56). Effectively,
the limit / — 0 with well-defined v corresponds to D = 0. The kind of approxi-
mation just mentioned is a special case of van Kampen’s system size expansion
which we treat fully in Sect.7.2.3.

3.8.4 The Ornstein-Uhlenbeck Process

All the examples so far have had no stationary distributien, that is, as t — co, the
distribution at any finite point approaches zero and we see that, with probability
one, the point moves to infinity.

If we add a linear drift term to the Wiener process, we have a Fokker-Planck
equation of the form

0,p = 0(kxp) + ¥D d%p, (3.8.61)
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where by p we mean p(x, t| x,, 0). This is the Ornstein-Uhlenbeck process [3.5]. The
equation for the characteristic function

8(5) = | € p(x, ] xo, 0)dx is (3.8.62)
0. + ksop = — } Ds’$ . (3.8.63)
The method of characteristics can be used to solve this equation, namely, if

u(s, t,9) = a and v(s, t,8) =b (3.8.64)

are two integrals of the subsidary equation (with a and b arbitrary const)

s _ 9 (3.8.65)

then a general solution of (3.8.63) is given by

fu, v) = 0.

The particular integrals are readily found by integrating the equation involving dt
and ds and that involving ds and dg; they are

u(s, t, ) = sexp (— kt) and (3.8.66)

v(s, t, @) = ¢ exp (Ds?/4k) , (3.8.67)

and the general solution can clearly be put in the form v = g(x) with g(u) an arbi-
trary function of u. Thus, the general solution is

#(s, t) = exp (—Ds*/4k)g[s exp (-—kt)] (3.8.68)
The boundary condition

p(x, 0] x,, 0) = 8(x — xo) (3.8.69)
clearly requires

#(s, 0) = exp (ix,s) (3.8.70)
and gives

g(s) = exp (Ds*/4k + ix,s) ,

and hence,

— Ds? _ .
é(s, t) = exp[—w (1 — e %) 4 isxge™* (3.8.71)
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which, from Sect.2.8.1, corresponds to a Gaussian with

{X(t)) = xo exp (—kt) (3.8.72)
var {X(t)} = 2%[l — exp (—2kt)] . (3.8.73)

Clearly, as t — oo, the mean and variance approach limits 0 and D/2k, respec-
tively, which gives a limiting stationary solution. This solution can also be obtained
directly by requiring 8,p = 0, so that p satisfies the stationary Fokker-Planck equa-
tion

a,[kxp + 4Db, p] —0 (3.8.74)

and integrating once, we find

[kxp + }Da,p]; = 0. (3.8.75)

The requirement that p vanish at —oo together with its derivative, is necessary for
normalisation. Hence, we have

1 2kx
— 0, p = —— 3.8.76
p 0P D , ( )

sothat p,(x) = (nD/k)™'"? exp (—kx?*/D) - (3.8.77)

which is a Gaussian with mean 0 and variance D/2k, as predicted from the time-
dependent solution.

It is clear that a stationary solution can always be obtained for a one variable
system by this integration method if such a stationary solution exists. If a stationary
solution does not exist, this method gives an unnormalisable solution.

Time Correlation Functions for the Ornstein-Uhlenbeck Process. The time correla-
tion function analogous to that mentioned in connection with the Wiener process
can be calculated and is a measurable piece of data in most stochastic systems.
However, we have no easy way of computing it other than by definition

XX ()| [xo0, to]) = [[ dxidx; X3 p(x1, t5 X3, S| Xo, to) (3.8.78)
and using the Markov property

= [[ dxidx; %3 p(xy, t] X2, $)p(X2, 5| X, to) (3.8.79)
on the assumption that

tZ2s21t. (3.8.80)
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The correlation function with a definite initial condition is not normally of as
much interest as the stationary correlation function, which is obtained by allowing the
system to approach the stationary distribution. It is achieved by putting the initial
condition in the remote past, as pointed out in Sect. 3.7.2. Letting t, — — oo, we
find

lim p(xs, 5| X0, to) = ps(x2) = (nD[k)"'* exp (— kx3/D) . (3.8.81)

tg——o

and by straightforward substitution and integration and noting that the stationary
mean is zero, we get

KX = XW.XE), = f—kem (—=klt—s]). (3.8.82)

This result demonstrates the general property of stationary processes: that the
correlation functions depend only on time differences. It is also a general result
[3.6] that the process we have described in this section is the only stationary Gaus-
sian Markov process in one real variable.

The results of this subsection are very easily obtained by the stochastic differ-
ential equation methods which will be developed in Chap.4.

The Ornstein-Uhlenbeck process is a simple, explicitly representable process,
which has a stationary solution. In its stationary state, it is often used to model a
realistic noise signal, in which X(¢) and X(s) are only significantly correlated if

lt—s| ~1k=t. (3.8.83)

(More precisely, 7, known as the correlation time can be defined for arbitrary
processes X(s) by

T = [ dt (X@t), XO)fvar {X}, (3.8.84)

which is independent of the precise functional form of the correlation function).

3.8.5 Random Telegraph Process

We consider a signal X(¢) which can have either of two values a and b and switches
from one to the other with certain probabilities per unit time. Thus, we have a
Master equation

0.P(a, t|x, ty) = —AP(a, t|x, to) + uP(b, t|x, ty)

(3.8.85)
9,P(b, t| x, t,) = AP(a, t|x, to) — uP(b, t|x, t;)

for which the solution can simply be found by noting that

P(a, t|x, to) + P(b, t]x, to) = 1
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and that a simple equation can be derived for AP(a, t|x, t,) — uP(b, t|x, t;), whose
solution is, because of the initial condition

P(xX', ty] x, to) = Oy, 1 (3.8.86)

AP(a, t|x, t)) — uP(b, t|x, to) = exp [—(A + p)(t — t))(Ad,,. — ud,,.) (3.8.87)

so that
A
P@, 1], 10) = 72+ oxp [+ ) (¢ = 0] (17 00 — 7500
3.8.88
1 ( )
P(b9t|x’t0)=m_exp[—(l-}_ﬂ)(t to)](ld}_# a,x l*‘}— 5bx)

This process clearly has the stationary solution obtained by letting t, — —oo:

u
P(a) = ——
+
) a (3.8.89)
P(b) = —
() A+
which is, of course, obvious from the Master equation.
The mean of X(¢) and its varianc&are straightforwardly computed:
CX()|[x0, t]> = 20 xP(x, t| xo, to)
_out bl — 101 [+ M)
="+ + exp [—(A + @)t — 1,)] P (3.8.90)
so that
xy, =tk (3.8.91)

u+a

The variance can also be computed but is a very messy expression. The stationary
variance is easily computed to be

(a— b)Yui

var{X}, = G o

(3.8.92)

To compute the stationary time correlation function, we write (assuming ¢ > s)
X)X (5))s = 25 xx'P(x, t]| X', 5)Py(x") (3.8.93)
= le xX'{X(@)|[x', sDPy(x") . (3.8.94)
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we now use (3.8.90-92) to obtain

CX(DX(8))s = (XD} + exp [—(A + p)(t — KX, — KXDD) (3.8.95)

_ (aZ i 2,1)2 +exp[—(A+ m)(t — s)](—‘(’{j}i%l. (3.8.96)
Hence,
HOXOP, = KOXY, — Xyt =exp [+ ] —s1G2EL 3.897)

Notice that this time correlation function is of exactly the same form as that of the
Ornstein-Uhlenbeck process. Higher-order correlation functions are not the same
of course, but because of this simple correlation function and the simplicity of the
two state process, the random telegraph signal also finds wide application in
model building.
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4.1 Motivation

In Sect.1.2.2 we met for the first time the equation which is the prototype of what
is now known as a Langevin equation, which can be described heuristically as an
ordinary differential equation in which a rapidly and irregularly fluctuating random
function of time [the term X(¢) in Langevin’s original equation] occurs. The sim-
plicity of Langevin’s derivation of Einstein’s results is in itself sufficient motivation
to attempt to put the concept of such an equation on a reasonably precise footing.

The simple-minded Langevin equation that turns up most often can be written
in the form

Z—;‘ = a(x, t) + b(x, 1)&(t), 4.1.1)

where x is the variable of interest, a(x, t) and b(x, t) are certain known functions and
&(¢) is the rapidly fluctuating random term. An idealised mathematical formulation
of the concept of a “rapidly varying, highly irregular function’ is that for ¢ % ¢/, &(¢)
and &(t') are statistically independent. We also require {&(¢)) = 0, since any non-
zero mean can be absorbed into the definition of a(x, t), and thus require that

@&y =8t — 1) 4.1.2)

which satisfies the requirement of no correlation at different times and furthermore,
has the rather pathological result that &(¢) has infinite variance. From a realistic
point of view, we know that no quantity can have such an infinite variance, but
the concept of white noise as an idealisation of a realistic fluctuating signal does
have some meaning, and has already been mentioned in Sect.1.4.2 in connection
with Johnson noise in electrical circuits. We have already met two sources which
might be considered realistic versions of almost uncorrelated noise, namely, the
Ornstein-Uhlenbeck process and the random telegraph signal. For both of these
the second-order correlation function can, up to a constant factor, be put in the
form

XQ@), X(t)y = % e e=e 4.1.3)
Now the essential difference between these two is that the sample paths of the ran-

dom telegraph signal are discontinuous, while those of the Ornstein-Uhlenbeck pro-
cess are not. If (4.1.1) is to be regarded as a real differential equation, in which &(¢)
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is not white noise with a delta function correlation, but rather a noise with a finite
correlation time, then the choice of a continuous function for &(¢) seems essential
to make this equation realistic: we do not expect dx/dt to change discontinuously.
The limit as y — Qdof the correlation function (4.1.3) is clearly the Dirac delta func-
tion since

I % e gt = | (4.1.4)

—oo

and for ¢t # ¢,

lim % e =70 4.1.5)

Y—oo

This means that a possible model of the &(¢) could be obtained by taking some
kind of limit as y — co of the Ornstein-Uhlenbeck process. This would corres-
pond, in the notation of Sect. 3.8.4, to the limit

k— oo (4.1.6)

with D = k?. This limit simply does not exist. Any such limit must clearly be taken
after calculating measurable quantities. Such a procedure is possible but too
cumbersome to use as a calculational tool.

An alternative approach is called for. Since we write the differential equation
(4.1.1), we must expect it to be integrable and hence must expect that

u(t) = jdt’ &t') 4.1.7)

exists.
Suppose we now demand the ordinary property of an integral, that u(¢) is a con-
tinuous function of ¢. This implies that u(¢) is a Markov process since we can write

u(t’) = !ds &s) + [ ds &) (4.1.8)
= lim ['f'ds é(s)] +[dse) (4.1.9)

and for any ¢ > 0, the &(s) in the first integral are independent of the &(s) in the
second integral. Hence, by continuity, u(¢) and u(¢’) — u(t) are statistically indepen-
dent and further, u(t’) — u(¢) is independent of u(¢”) for all ¢ < ¢. This means
that u(¢’) is fully determined (probabilistically) from the knowledge of the value of
u(t) and not by any past values. Hence, u(t) is a Markov process.

Since the sample functions of u(t) are continuous, we must be able to describe
u(t) by a Fokker-Planck equation. We can compute the drift and diffusion coef-
ficients for this process by using the formulae of Sect.3.5.2. We can write
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e + A0~ wollu, 1 = €T 61y =0 @.1.10)
and

Qe + A1) — ugl | [, 11 = ”f’ds 'T'ds'@(s)f(s'» (@.1.11)

— ”f'ds 'f'd:’&(s — &) = At 4.1.12)

so that the drift and diffusion coefficients are

Cult + AL — wp| [, 1) _

Aug, t) = ,1:93, AL 0 (4.1.13)
T2
By, 1) = lim LU AD — ol |lton 0D _ (4.1.14)
Ar—0 At

Thus, the Fokker-Planck equation is that of the Wiener process and we can write
[&@Ndt = u(t) = W(1) . (4.1.15)
0

Thus, we have the paradox that the integral of &£(¢) is W(t), which is itself not dif-
ferentiable, as shown in Sect.3.8.1. This means that mathematically speaking, the
Langevin equation (4.1.1) does not exist. However, the corresponding integral
equation i

x(1) — x(0) = [ ax(s), s1ds + | bx(s), s}E(s)ds (4.1.16)

0

can be interpreted consistently.
We make the replacement, which follows directly from the interpretation of the
integral of &(t) as the Wiener process W(), that

dW(t) = W (t + dt) — W(t) = &@t)dt 4.1.17)

and thus write the second integral as
[ blx(s), s}dW(s) (4.1.18)
0

which is a kind of stochastic Stieltjes integral with respect to a sample function
W(t). Such an integral can be defined and we will carry this out in the next section.

Before doing so, it should be noted that the requirement that u(¢) be continuous,
while very natural, can be relaxed to yield a way of defining jump processes as
stochastic differential equations. This has already been hinted at in the treatment of
shot noise in Sect. 1.4.1. However, it does not seem to be nearly so useful and will
not be treated in this book. The interested reader is referred to [4.1].
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As a final point, we should note that one normally assumes that &(t) is Gaus-
sian, and satisfies the conditions (4.1.2) as well. The above did not require this:
the Gaussian nature follows in fact from the assumed continuity of u(t). Which of
these assumptions is made is, in a strict sense, a matter of taste. However, the
continuity of u(t) seems a much more natural assumption to make than the Gaus-
sian nature of &(t¢), which involves in principle the determination of moments of
arbitrarily high order.

4.2 Stochastic Integration

4.2.1 Definition of tile Stochastic Integral

Suppose G(¢) is an arbitrary function of time and W(t) is the Wiener process. We
define the stochastic integral I:OG(r')dW(t’) as a kind of Riemann-Stieltjes integral.

Namely, we divide the interval [¢,, t] into n subintervals by means of partitioning
points (as in Fig. 4.1)

o fl 1'2 fn_| t
T LT T T

Fig. 4.1. Partitioning of the time interval used in the definition of stochastic integration

L<H <LK <t <, (4.2.1)
and define intermediate points 7, such that
LS T <. 4.2.2)

t
The stochastic integral | G(t')dW(t') is defined as a limit of the partial sums.
to

Sa = 35 GEIW(t) — Wit 4.2.3)

It is heuristically quite easy to see that, in general, the integral defined as the limit of
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S, depends on the particular choice of intermediate point t,. For, if we take the

choice of G(z7,) = W(z),
(S0 = <3 W) — Wt

- ,Z. [min(z,, t,) — min(z,, t,_,)]

Z_.: (r— tioy).
If, for example, we choose for all i

=a; +(1—a)t,_, O<a<l),

then (S,> = 2]1 ti—ti)a=(—1t)e

(4.2.9)
(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)

So that the mean value of the integral can be anything between zero and (r — ¢,),

depending on the choice of intermediate points.

We therefore make the choice of intermediate points characterised by « = 0,

that is, we choose
T, =ty

¥
and thus define the Ito stochastic integral of the function G(¢) by

-

L d

f 6w () = ms i {32 G0 — Wi,

By ms-lim we mean the mean square limit, as defined in Sect.2.9.2.

422 Example [ W(t)dW(¢)
)
An exact calculation is possible. We write [writing W, for W(t,)]
S, =<=,31 Wi (We— W) = Z;: W, AW,
=3 (Wo + AW — (W1 — (AW
= JW(F — W] — § 3 (AW
We can calculate the mean square limit of the last term. Notice that

QAW = Z AW, — W)» = ; t—t_)=1t—1t,

Because of this,

4.2.9)

(4.2.10)

(4.2.12)

(4.2.13)

(4.2.14)
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ON A AN A D
= <;_ (Wi — W) + 2 ;) (W: — Wi (W, — W)
=2t — 1) S Wy — Wl + (= 1) (4.2.15)

Notice the W, — W,_, is a Gaussian variable and is independent of W, — W,_,.
Hence, we can factorise. Thus,

(Wi = W) (W, — W) =6 — 6) (G — 1) (4.2.16)
and also [using (2.8.6)]
W, — W) =3W: — Wi)H? =3(t — 1) 4.2.17)

which combined with (4.2.16) gives

<[ZII Wi— W) — (=) =2 $ (t; — t._)? (4.2.18)
+ ;.; [(t; —t:is) — (@ — )] [(5; — 1,20) — (¢ — 20)]
=2 Z — ti.1)?

— 0 as n— co.
Thus,

ms-lim >3 (W, — W,_)* =t — ¢, (4.2.19)

n—co i

by definition of the mean square limit, so

§ Wandw('y = JIWaY — Wity — (¢ — to)l.

(4.2.20)

Comments
i) ¢ WOAWO) = FIVP) — W — (= 1] = 0 @“2.21)

This is also obvious by definition, since in the individual terms we have

{W,_, AW,> which vanishes because AW, is statistically independent of W,_,,
as was demonstrated in Sect.3.8.1.
ii) The result for the integral is no longer the same as for the ordinary Riemann-Stielt-
jes integral in which the term (¢ — t,) would be absent. The reason for this is that
| W(t + At) — W(t)| is almost always of the order /1, so that in contrast to or-
dinary integration, terms of second order in AW(t) do not vanish on taking the
limit.
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4.2.3 The Stratonovich Integral

An alternative definition was introduced by Stratonovich [4.2] as a stochastic integral
in, which the anomalous term (¢ — ;) does not occur. We define this fully in
Sect. 4.3.6 — in the cases considered so far, it amounts to evaluating the integrand
as a function of W (r) at the value % [W(t) + W(t;_y)) It is straightforward to show
that

S{ww)ydw )

lo

— ms-lim 3 W)+ W(ti-y)

n—+x ;=1 2

=L [W (0= W(to)]. (42.23)

[W () — W(t-1)] (4.2.22)

However, the integral as defined by Stratonovich [which we will always designate
by a prefixed S as in (4.2.24)] has no general relationship with that defined by Ito.
That is, for arbitrary functions G(¢), there is no connection between the two
integrals. [In the case, however, where we can specify that G(¢) is related to some
stochastic differential equation, a formula can be given relating one to the other,
see Sect.4.3.6].

4.2.4 Nonanticipating Functions

The concept of a nonanticipating fupcticn can be easily made quite obscure by
complex notation, but is really quite simple. We have in mind, a situation in which
all functions can be expressed as functions or functionals of a certain Wiener
process W(t) through the mechanism of a stochastic differential (or integral)
equation of the form

t t
x(t) — x(to) = [ alx(r"), t')dt’ + [ b[x(t"), t')AW(t") . (4.2.24)
to ‘o
A function G(¢) is called a nonanticipating function of t if for all s and ¢ such that
t < s, G(¢) is statistically independent of W(s) — W(¢). This means that G(¢) is in-
dependent of the behaviour of the Wiener process in the future of ¢. This is clearly
a rather reasonable requirement for a physical function which could be a solution
of an equation like (4.2.24) in which it seems heruistically obvious that x(¢) involves
W(t') only for ¢’ < t.
For example, specific nonanticipating functions of ¢ are:

i) W(t)
iy [ di FLwa)

iii) [ awie) FLW(E)]
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iv) [ drG() 1
": when G(¢) is itself a nonanticipating function
v)  [dw()G() J
0

Results (iii) and (v) depend on the fact that the Ito stochastic integral, as defined
in (4.2.10), is a limit of the sequence in which only G(¢') for ¢’ < t and W(¢’) for
t' < t are involved.

The reasons for considering nonanticipating functions specifically are:

i) many results can be derived, which are only true for such functions;

ii) they occur naturally in situations, such as in the study of differential equations
involving time, in which some kind of causality is expected in the sense that the
unknown future cannot affect the present;

iii) the definition of stochastic differential equations requires such functions.

4.2.5 Proof that dW(f)* = dt and dW(t)**~ = 0

The formulae in the heading are the key to the use of the Ito calculus as an ordinary
computational tool. However, as written they are not very precise and what is really
meant is

I3

[[dW(")P*NG(t') = ms-lim 2 G AW
t0 n—oco i
— fdrG(tyfor N=0 (4.2.25)
t0
=0 for N> 0

for an arbitrary nonanticipating function G(t).
The proof is quite straightforward. For N = 0, let us define

I=1im {3 G (AW?2 — AP (4.2.26)

= l""rg {(Z(GK—I)Z(A Wi — At) + ; 2G,.,G,_ (AW} — AL)(AW?E — Atr))}‘
Independent Independent (4.2.27)

The horizontal braces indicate factors which are statistically independent of each
other because of the properties of the Wiener process, and because the G, are values
of a nonanticipating function which are independent of all AW, forj > i.

Using this independence, we can factorise the means, and also using

i) (AW? = At
i) ((AW? — At,)*>= 2At? (from Gaussian nature of 4 W),
we find

I=21lim [ AtX(G.)P] - (4.2.28)
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Under reasonably mild conditions on G(t) (e.g., boundedness), this means that

ms-lim (5 G, AW} — 3 G1At) = 0 (4.2.29)
and since
ms-lim 37 G,_, At, = fdrGary, (4.2.30)
ne 0
we have

[[dWPG(t) = [drG(r').

Comments
i) The proof [ G()[dW()]**¥ = 0 for N > 0 is similar and uses the explicit ex-

pressions for the higher moments of a Gaussian (Sect.2.8.1).

il) dW(t) only occurs in integrals so that when we restrict ourselves to nonantici-
pating functions, we can simply write

dW(t)* = dt (4.2.31)

dw()*N = 0(N > 0). . (4.2.32)
iii) The results are only valid for the Ito integral, since we have used the fact that
AW, is independent of G,_,. In the Stratonovich integral,

AW, = W(t) — W(t:_y) (4.2.33)
Gy = Gt + t.-0)] (4.2.34)

and although G(¢) is nonanticipating, this is not sufficient to guarantee the indepen-
dence of AW, and G,_, as thus defined.

iv) By similar methods one can prove that
[ G(tdr'dW(t') = ms-lim 3} G, , AW, At, =0 (4.2.35)
o n—co

and similarly for higher powers. The simplest way of characterising these results
is to say that dW(t) is an infinitesimal order of § and that in calculating differ-
entials, infinitesimals of order higher than 1 are discarded.

4.2.6 Properties of the Ito Stochastic Integral

a) Existence
t
One can show that the Ito stochastic integral [ G(t')dW(t’) exists whenever the

. . . .. . {0 .
function G(t') is continuous and nonanticipating on the closed interval [t,, t] [4.3].
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b) Integration of Polynomials
We can formally use the result of Sect.4.2.5:

AW = W) + awo)r — way =3 (7) wer—away
and using the fact that dW(t)" — O for all r > 2,

= nW(t)y" 'dW(t) + mn—1) W(t)"dt (4.2.36)

2

so that

‘ "\ n_o 1 A+l __ L n—1
!J; W'y dw(t') = g [W(2) W(t)"'] 2 ‘J; W) 'dt. 4.2.37)

¢) Two Kinds of Integral
We note that for each G(¢) there are two kinds of integrals, namely,

fGydr and |G )aw(y.

both of which occur in the previous equation. There is, in general, no connection
between these two kinds of integral.

d) General Differentiation Rules
In forming differentials [as in(b) above], one must keep all terms up to second order
in dW(t). This means that, for example,

d{exp [W(1)]} = exp [W(t) + dW(1)] — exp [W(1)]
= exp [W(OldW(t) + 1dW(t)’]
= exp [W(dW(1) + }dt] (4.2.38)

or more generally,

g, 1= Lo+ L Ty + 3 away + L T awiop

o*f
+ sipg AW + .

and we use (dt) —0
dtdW(t) — 0 [Sect. 4.2.5, comment (iv)]
[dW ()] = dt

and all higher powers vanish, to arrive at
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), 1] = (g—tf+ 1 aa:sz) dt + aa—[/{/dW(t) . (4.2.39)

€) Mean Value Formula
For nonanticipating G(¢),

G yaw(yy=0. (4.2.40)

For, since G(¢) is nonanticipating, in the definition of the stochastic integral,
(2‘ G AW) = 2‘ (Gi_p{AW,) =0 (4.2.41)

and we know from Sect. 2.9.5 that operations of ms-lim and { ) may be inter-
changed. Hence, taking the limit of (4.2.41), we have the result.

This result is not true for Stratonovich’s integral, since the value of G,_, is
chosen in the middle of the interval, and can be correlated with AW,.

f) Correlation Formula
If G(¢) and H(t) are arbitrary continuous nonanticipating functions,

t t x t
J GEYaw(t'y [ H@'ydw(t')y = [dr (G(')H(t")) . (4.2.42)

Proof. Notice that

<’2 G, AW, 2 H_AW);) = <Z G Hi (AW
J i
+ <‘§ (G Hi_, + G_H_)AW,AW, . (4.2.43)
In the second term, AW, is independent of all other terms since j < i, and G and H

are nonanticipating. Hence, we may factorise out the term (AW,> = 0 so that this
term vanishes. Using

(AW = At (4.2.44)

and interchanging mean and limit operations, the result follows.
Formally, this is equivalent to the idea that Langevin terms &(¢) are delta corre-
lated and uncorrelated with F(¢) and G(¢). For, rewriting

dW(t) — &(t)de (4.2.45)

it is clear that if F(¢) and G(t) are nonanticipating, &(¢) is independent of them, and
we get
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{ | drds U HE )Y EE)E
[ di' (G H(t')) (4.2.46)

0

£

far [ ds (G)HE &)y =

which implies
E()es)y =8(t — 5) .

An important point of definition arises here, however. In integrals involving delta
functions, it frequently occurs in the study of stochastic differential equations
that the argument of the delta function is equal to either the upper or the lower
limit of the integral, that is, we find integrals like

I, =‘fdtf(t)5(t — 1) (4.2.47)
or
L= [ty — 1) (4.2 48)

and various conventions can be made concerning the value of such integrals. We
will show that in the present context, we must always make the interpretation

I = f(t) (4.2.49)
L=0 (4.2.50)

corresponding to counting all the weight of a delta function at the lower limit of an
integral, and none of the weight at the upper limit. To demonstrate this, note that

[ Ganawa ['f H(s)dW(s)]) = 0 (4.2.51)

This follows, since the function defined by the integral inside the square bracket is,
by Sect.4.2.4 comment (v), a nonanticipating function and hence the complete
integrand, [obtained by multiplying by G(¢') which is also nonanticipating] is
itself nonanticipating. Hence the average vanishes by the result of Sect. 4.2.6e.

Now using the formulation in terms of the Langevin source £(¢), we can rewrite
(4.2.52) as

fdt"j' ds'{G(t'YH(s')Y8(t' — s) = 0 (4.2.52)

which corresponds to not counting the weight of the delta function at the upper
limit. Consequently, the full weight must be counted at the lower limit.
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This property is a direct consequence of the definition of the Ito integral as in
(4.2.10), in which the increment points “towards the future”. That is, we can
interpret

dW(t) = W(t + dt) — W(1). (4.2.53)

In the case of the Stratonovich integral, we get quite a different formula, which is
by no means as simple to prove as in the Ito case, but which amounts to choosing

I = %f(tl)

L = 1At (Stratonovich) (4.2.54)

" This means that in both cases, the delta function occuring at the limit of an integral
has 4 its weight counted. This formula, although intuitively more satisfying than
the Ito form, is more complicated to use, especially in the perturbation theory of
stochastic differential equations, where the Ito method makes very many terms
vanish.

4.3 Stochastic Differential Equations (SDE)

We concluded in Sect.4.1, that the most satisfactory interpretation of the Langevin
equation

K
Z—;‘ = a(x, t) + b(x, 1)&(t) e 4.3.1)
is a stochastic integral equation
x(t) — x(0) = fdt’a[x(t'), ']+ de(t')b[x(t'), t']. 4.3.2)

Unfortunately, the kind of stochastic integral to be used is not given by the reason-
ing of Sect.4.1. The Ito integral is mathematically and technically the most satis-
factory, but unfortunately, it is not always the most natural choice physically.
The Stratonovich integral is the natural choice for an interpretation which assumes
&(t) is a real noise (not a white noise) with finite correlation time, which is then
allowed to become infinitesimally small after calculating measurable quantities.
Furthermore, a Stratonovich interpretation enables us to use ordinary calculus,
which is not possible for an Ito interpretation.

From a mathematical point of view, the choice is made clear by the near impos-
sibility of carrying out proofs using the Stratonovich integral. We will therefore
define the Ito SDE, develop its equivalence with the Stratonovich SDE, and use
either form depending on circumstances. The relationship between white noise
stochastic differential equations and the real noise systems is explained in Sect.6.5.
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4.3.1 Ito Stochastic Differential Equation: Definition
A stochastic quantity x(z) obeys an Ito SDE written as
dx(t) = a[x(t), t1dt + b[x(t), t]JdW(t) 4.3.3)

if for all ¢ and ¢,,
(1) = x(to) + [ dt’ alx(t'), ] + | dAW(E') Bix('), £'] . 4.3.9)

Before considering what conditions must be satisfied by the coefficients in (4.3.4),
it is wise to consider what one means by a solution of such an equation and what
uniqueness of solution would mean in this context. For this purpose, we can con-
sider a discretised version of the SDE obtained by taking a mesh of points ¢, (as
illustrated in Fig. 4.2) such that

Lh<h<thh< - <ta,<t,=t (4.3.5)
and writing the equation as

X1 = X; + a(x;, )AL, + b(x;, t)AW, . (4.3.6)

3

a(Xi,ti)Atl

|
b(xi, ti) AWY;

te  t,  t. t, t.  t, te t

Fig. 4.2. Illustration of the Cauchy-Euler procedure for constructing an approximate solution of
the stochastic differential equation dx(t) = a[x(¢), tldt + b[x(t), t1dW (t)

Here,

x; = x(t;)
At‘ == t,+| - t,- (4.3.7)
AW: = W(’r+l) - W(ti)-

We see from (4.3.6) that an approximate procedure for solving the equation is to
calculate x,,, from the knowledge of x; by adding a deterministic term

a(x,, t;)At, (4.3.8)
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and a stochastic term
b(xi, t)AW, . 4.3.9)

The stochastic term contains an element AW,, which is the increment of the Wiener
process, but is statistically independent of x, if (i) x, is itself independent of all
W(t) — W(t,) for t > t, (thus, the initial conditions if considered random, must
be nonanticipating) and (ii) a(x, ) is a nonanticipating function of ¢ for any fixed x.

Constructing an approximate solution iteratively by use of (4.3.6), we see that x;
is always independent of AW, for j > i.

The solution is then formally constructed by letting the mesh size go to zero.
To say that the solution is unique means that for a given sample function W(t) of
the random Wiener process W(t), the particular solution of the equation which
arises is unique. To say that the solution exists means that with probability one,
a solution exists for any choice of sample function W(r) of the Wiener process W(t).

The method of constructing a solution outlined above is called the Cauchy-
FEuler method, and can be used to generate simulations.

However, this is not the way uniqueness and existence are usually demonstrated,
though it is possible to demonstrate these properties this way. Existence and unique-
ness will not be proved here. The interested reader will find proofs in [4.3].
The conditions which are required for existence and uniqueness in a time interval
[to, T] are:

i) Lipschitz condmon a K exists such that
la(x, t) — a(y, )| + |b(x, t)—b(y, Dl <Klx—yl - (4.3.10)

for all x and y, and all ¢ in the range [t,, T].

ii) growth condition: a K exists such that for all ¢ in the range [t,, T],
la(x, t)|* + |b(x, )|* < K¥(1 + |x[|?). (4.3.11)

Under these conditions there will be a unique nonanticipating solution x(t) in the
range [t,, T].

Almost every stochastic differential equation encountered in practice satisfies
the Lipschitz condition since it is essentially a smoothness condition. However,
the growth condition is often violated. This does not mean that no solution exists;
rather, it means the solution may ‘“‘explode” to infinity, that is, the value of x can
become infinite in a finite time; in practice, a finite random time. This phenomenon
occurs in ordinary differential equations, for example,

1
—ax®
2

815

(4.3.12)

has the general solution with an initial condition x = x, at t = 0,

x(t) = (— at + 1/x2)~2. (4.3.13)
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If ais positive, this becomes infinite when x, = (az)~'/* but if a is negative, the solu-
tion never explodes. Failing to satisfy the Lipschitz condition does not guarantee
the solution will explode. More precise stability results are required for one to be
certain of that [4.3].

4.3.2 Markov Property of the Solution of an Ito Stochastic Differential Equation

We now show that x(¢), the solution to the stochastic differential equation (4.3.4),
is a Markov Process. Heuristically, the result is obvious, since with a given initial
condition x(t,), the future time development is uniquely (stochastically) deter-
mined, that is, x(¢) for t > t, is determined only by

<

i) the particular sample path of W(t) for t > ¢, ;
it) the value of x(¢,).

Since x(t) is a nonanticipating function of ¢, W(t) for t > t, is independent of x(t)
for t < t,. Thus, the time development of x(¢) for ¢ > ¢, is independent of x(¢) for
t < ty provided x(t,) is known. Hence, x(¢) is a Markov process. For a precise proof
see [4.3].

4.3.3 Change of Variables: Ito’s Formula

Consider an arbitrary function of x(¢): f[x(¢)]. What stochastic differential equa-
tion does it obey? We use the results of Sect.4.2.5 to expand df[x(t)] to second
order in dW(t):

dfx(0)] = fIx(t) + dx(1)] — f[x(1)]
= fx()dx(t) + 4 f"[x(Dldx(1)* + ...
= f'[x(ON{alx(1), t]dt + blx(1), t]dW(1)}
+ 1 Ix@O)Lx(0), tPAW ) + ...,

where all other terms have been discarded since they are of higher order. Now use
[dW(t)]* = dt to obtain

dfx(1)] = {alx (1), t1f'[x(0)] + $blx(1), 11/ [x(D)]} dt

(4.3.14)
+ blx(®), 111 [x(1)ldW(t) .

This formula is known as Ito’s formula and shows that changing variables is
not given by ordinary calculus unless f[x(¢)] is merely linear in x(¢).

Many Variables. In practice, Ito’s formula becomes very complicated and the
easiest method is to simply use the multivariate form of the rule that dW(¢)is an in-
finitesmial of order . By similar methods to those used in Sect.4.2.5, we can show
that for an n dimensional Wiener process W(¢),
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AW ()dW (1) = J,,dt (4.3.15)
[dWLOIF*2 =0 (N> 0) (4.3.15b)
dwt)dt =0 (4.3.15¢)
dii+n =0 (N>0). (4.3.15d)

which imply that dW,(¢) is an infinitesimal of order . Note, however, that (4.3.15a)
is a consequence of the independence of dW(t) and dW,(t). To develop Ito’s for-
mula for functions of an n dimensional vector x(¢) satisfying the stochastic differen-
tial equation

dx = A(x, t)dt + B(x, )dW(t), (4.3.16)

we simply follow this procedure. The result is

dftx) = {3 4i(x, )9.f(x) + } %] [B(x, )B"(x, 1)],,0.0, f(x)} dt

43.17
+ ; B, (x, )0, f(x)dW,(t) . ( )

4.3.4 Connection Between Fokker-Planck Equation and Stochastic
Differential Equation

We now consider the time developmenf of an arbitrary f(x(¢)). Using Ito’s formula

~

ftxtonidr = (LB, 4 oy
= <a[x<r>, r]axf+ BLX(), (PO (43.18)

However, x(¢) has a conditional probability density p(x, t]x,, t,) and

ST = [ dx R, 1150, 1)
= [ dx[a(x, )0, f + +b(x, 1)20% f1p(x, t| xq, to) . (4.3.19)

This is now of the same form as (3.4.16) Sect.3.4.1. Under the same conditions as
there, we integrate by parts and discard surface terms to obtain

[ dx f(x)0.p = [ dx f(x) {—8.[a(x, t)p] + $3%Ub(x, 1)*p]}

and hence, since f(x) is arbitrary,

alp(x’ t'xo, IO) = —aﬂa('x’ t)P(x7 tIXO’ tO)] + %az[b(x’ t)zp(x» tIXOy to)] .

(4.3.20)



4.3 Stochastic Differential Equations (SDE) 97

We have thus a complete equivalence to a diffusion process defined by a drift
coefficient a(x, ¢) and a diffusion coefficient b(x, t)>.

The results are precisely analogous to those of Sect.3.5.3, in which it was shown
that the diffusion process could be locally approximated by an equation resembling
an Ito stochastic differential equation.

4.3.5 Multivariable Systems

In general, many variable systems of stochastic differential equations can be defined
for n variables by

dx = A(x, t)dt + B(x, )dW(1), 4.3.21)

where dW(t) is an n variable Wiener process, as defined in Sect.3.8.1. The many
variable version of the reasoning used in Sect. 4.3.4 shows that the Fokker-Planck
equation for the conditional probability density p(x, t|x,, t,) = p is

0ip = —IZ 0fAx, 1)p] + 4 %afal{[.B(xy B (x, 1)];p}. (4.3.22)

Notice that the same Fokker-Planck equation arises from all matrices B such that
BBT is the same. This means that we can obtain the same Fokker-Planck equation
by replacing B by BS where § is orthogonal, i.e., $§T = 1. Notice that .§ may de-
pend on x(¢). This can be seen more directly. Suppose S(¢) is an orthogonal matrix
with an arbitrary nonanticipating dependence on t. Then define

dV(t) = S(1)dW(). (4.3.23)

Now the vector d ¥(¢) is a linear combination of Gaussian variables d W(¢) with coe-
fficients §(¢) which are independent of d W(r), since S(¢) is nonanticipating. For any
fixed value of S(¢), the dV(¢t) are thus Gaussian and their correlation matrix is

avn)dvt)) = g Su(1)S;m(D)AW(1)dW (1))
= >:: Su(t)S,(t)dt = 8,;dt 4.3.29)

since S(¢) is orthogonal. Hence, all the moments are independent of §(¢) and are
the same as those of dW(z), so d¥(t) is itself Gaussian with the same correlation
matrix as dW(t). Finally, averages at different times factorise, for example, if
t>t'in

2 AW O)Sy(OaWit)S k() (4.3.25)

we can factorise out the averages of dW () to various powers since dW(t) is in-
dependent of all other terms. Evaluating these we will find that the orthogonal
nature of §(¢) gives, after averaging over dW(t), simply
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Zkl AW (O LdWi(t)Si(t)]™> (4.3.26)

which similarly gives {(dW,(t)]"[dW(t')]"). Hence, the d ¥(t) are also increments of
a Wiener process. The orthogonal transformation simply mixes up different
sample paths of the process, without changing its stochastic nature.

Hence, instead of (4.3.21) we can write

dx = A(x, t)dt + B(x, )ST()S()dW(t) 4.3.27)
= A(x, t)dt + B(x, NST()d (1), (4.3.28)

and since V(¢) is itself simply a Wiener process, this equation is equivalent to
dx = A(x,t)dt + B(x, t)ST(¢)dW(t) (4.3.29)

which has exactly the same Fokker-Planck equation (4.3.22).

We will return to some examples in which this identity is relevant in Sect.4.4.6.
4.3.6 Stratonovich’s Stochastic Differential Equation
Stratonovich [4.2] has defined a stochastic integral of an integrand which is a func-

tion of x(¢) and ¢ by

S[G[x(l) t]dW(t)—msllm

o

tioqg [W(t) — W(ti-y)]
- (4.3.30)

|X(t)+x(f. )
iz 2

It should be noted that only the dependence on x () is averaged. If G (z,¢) is dif-
ferentiable in ¢, the integral is independent of the particular choice of value for ¢
in the range [t;-1, ti]

It is possible to write a stochastic differential equation (SDE) using Strato-
novich’s integral

x(t) = x(to) + | dt'alx(t'), '] + S [ dW()BIx(t"), '], (4.3.31)

and we shall show that is equivalent to an appropriate Ito SDE.
Let us assume that x(¢) is a solution of

dx(t) = a[x(¢), t1dt + b[x(¢), t]dW(t) (4.3.32)

and deduce the corresponding @ and S. In both cases, the solution x(¢) is the same

functlon We first compute the connection between S de(t )BIx(t"), t'] and
de(t’)b[x(t) t']. Then,

S8 x (1) + x(ti-1)

SIdW(t’)/?[)c(t’),t’]2 5 o [[W () = W(tp)]. (4.3.33)
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In (4.3.33) we write
x(6) =x(tic)) +dx (i)
and use the Ito SDE (4.3.32) to write
dy (t;) =ax(ticy), imJ(ti— i) + b [x (62)), e ] [W () — W(i2)]. (4.3.34)
Then, applying Ito’s formula, we can write
xX(t) +x(ti-1)

B 3 stioy [ = BIx(tiz)) + 5 dx (tim1)s tiei]
=B(ti-y) +a(tizy) B (tizy) +%b2(’i—l)] [%([i_ tiz)]
+3b(ticy) 0B (Limy) [W () — W(ti-y)] (4.3.35)

(For simplicity, we write f(t;) etc, instead of B[x(z;), 1,] wherever possible). Putting
all these back in the original equation (4.3.32) and dropping as usual dt2, dt dW, and
setting dW? = dt, we find

S§=2 B-r) (W) - W(h-)}
+%Z b(ticy) 0cB(tizy) (Li—ti-1) -

Hence we derive

S [ BLx(t"), 1AWy = [ BIx(t"), £1aW(t’) + 4 [ bLx(e’), (10,81, £t |(4.3.37)

This formula gives a connection between the Ito and Stratonovich integrals of func-
tions B[x(¢'),t'], in which x(¢') is the solution of the Ito SDE (4.3.31). It does
not give a general connection between the Ito and Stratonovich integrals of arbi-
trary functions.

If we now make the choice

a(x, t) = a(x, t) — }b(x, 1)0,b(x, t)
B(x, t) = b(x, 1) (4.3.38)

We see that the Ito SDE dx = a dt + b dW(t), (4.3.39a)
is the same as the Stratonovich SDE dx = [a — 4b0d,bldt + b dW(t), |(4.3.39b)

or conversely,

the Stratonovich SDE dx =adt + B dW(t) (4.3.40a)
is the same as the Ito SDE  dx = [a + }3,8]dt + B dW(t). (4.3.40b)
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Comments

i) Using Ito’s formula (4.3.14) we can show that the rule for a change of variables
in Stratonovich SDE is exactly the same as in ordinary calculus. Start with the
Stratonovich SDE (4.3.40a), and convert to the Ito SDE (4.3.40b). Change to the
new variable y = f(x) with the inverse x = g(y).

Define  a(y) = elg(»)]
B(y) = Ble() -

Use Ito’s formula and note that dffdx = (dg/dy)~! to obtain the Ito SDE
)4 40 f () L8[ Rk ()
a =)+ 100,58 ()~ 4 () |+ (%) paw
Now convert back to a Stratonovich equation using (4.3.39); wc obtain

dy = (adt + fdw) (Z—i) -

or
df [x(1)] = {alx(t), tldt + Blx(t), t]dW(t)} f'[x(1)] (4.3.41)

which is the same as in ordinary calculus.

ii) Many Variables. If a many variable Ito equation is
§

dx = A(x, t)dt +B(x, t)dW(t) , (4.3.42)

e

then the corresponding Stratonovich equation can be shown similarly to be given
by replacing

A=A, — %,-,Zk: By,0: B,

B; =B, . (4.3.43)
iii) Fokker-Planck Equation corresponding to the Stratonovich SDE,

(S) dx = A*(x, t)dt + B(x,t)dW(t) (4.3.44)

can, by use of (4.3.43) and the known correspondence (Sect.4.3.5) between the
Ito SDE and Fokker-Planck equation, be put in the form

dp = —23.0.{4ip) + i‘]ZL 9, {B}x0,(Bj«pl} (4.3.45)

which is often known as the “Stratonovich form” of the Fokker-Planck equation.
In contrast to the two forms of the SDEs, the two forms of Fokker-Planck equation
have a different appearance but are (of course) interpreted with the same rules —
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those of ordinary calculus. We will find later that the Stratonovich form of the
Fokker-Planck equation does arise very naturally in certain contexts (Sect.6.6).

iv) Comparison of the Ito and Stratonovich Integrals. The Stratonovich integral as
defined in (4.3.30) is quite a specialised concept, for it can only be defined in terms
of a function G (z, ) of two variables. The more “obvious” definition in terms of
G(x[y(ti+ ti—1)), 5 (ti+ £;—;)) was not used by Stratonovich in his original defini-
tion, although the view that this provides the definition of the Stratonovich
integral is widespread in the literature (including the first edition of this book).
Apparently, the more obvious definition cannot be proved to converge — see [4.6].
In practise, the precise definition of the Stratonovich integral from first principles
is of no great interest, whereas the property that the rule for change of variables is
given by ordinary caléulus is of great significance, and this is ensured not so much
by the definition as by the relations (4.3.37, 43) between the two kinds of integral.
One could simply choose to define the Stratonovich integral as being given by
(4.3.37) when the function obeys the SDE (4.3.31), and this would be mathemat-
ically completely satisfactory, and much less confusing,

4.3.7 Dependence on Initial Conditions and Parameters

In exactly the same way as in the case of deterministic differential equations, if
the functions which occur in a stochastic differential equation depend continuously
on parameters, then the solution normally depends continuously on that parameter.
Similarly, the solution depends continuously on the initial conditions. Let us formu-
late this more precisely. Consider a one-variable equation

dx = a(A, x, t)dt + b(A, x, t)dW(t)
with initial condition ' (4.3.46)

x(to) = c(4)
where A is a parameter. Let the solution of (4.3.49) be x(4, t). Suppose

i) st-lim c(d) = c(4,) ;
A-21o
ii) }iT{SUP tE€t,, T[|a(4, x, t) — a4, x, )| + |b(A, x, t) — b4, x, t)|]} = 0;
-1 1xI<N

iii) a K independent of 1 exists such that

la@, x, 1% + 1b(4, x, 1)|* < K*(1 + |%*]).

I hen,
1 IAO {‘ tro, ]l ( ’ ) ( 0> )l . ( b )

For a proof see [4.1].
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Comments

i) Recalling the definition of stochastic limit, the interpretation of the limit (4.3.50)
is that as A — 4,, the probability that the maximum deviation over any finite in-
terval [t,, T'] between x(4, t) and x(4,, ¢) is nonzero, goes to zero.

ii) Dependence on the initial condition is achieved by letting @ and b be independent
of A.

iii) The result will be very useful in justifying perturbation expansions.

iv) Condition (ii) is written in the most natural form for the case that the functions
a(x, t) and b(x, t) are not themselves stochastic. It often arises that a(x, ¢) and
b(x, t) are themselves stochastic (nonanticipating) functions. In this case, condition
(ii) must be replaced by a probabilistic statement. It is, in fact, sufficient to replace

lim by st-lim.
PRy 119

4.4 Some Examples and Solutions

4.4.1 Coefficients Without x Dependence
The simple equation §
dx = a(t)dt + b(t)dW(t) _ (4.4.1)
with a(z) and b(t) nonrandom functions of time, is solved simply by integrating
x(t) = xo + [a(t)dt + [ b(t)dW(1) . 4.4.2)
to o
Here, x, can be either a nonrandom initial condition or may be random, but must
be independent of W(t) — W(t,) for t > t,; otherwise, x(¢) is not nonanticipating.
As constructed, x(¢) is Gaussian, provided x, is either nonrandom or itself Gaus-
sian, since
[ b(t)dw(t)
fo

is simply a linear combination of infinitesimal Gaussian variables.Further,

x(#)) = {xop + ja(t)dt

(since the mean of the Ito integral vanishes)
and
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x(0) — <x(ER]x(s) — <xND = {x(@), x(s))

= byawe) fosyamsyy = | (e

‘o

where we have used the result (4.2.42) with, however,

Gh=b(1")] t' <1t
=0 ' >t
H{)=b1")) t'<s
=0 t'>s

The process is thus completely determined.

4.4.2 Multiplicative Linear White Noise Process
The equation
dx = cx dW(t) (4.4.3)

is known as a multiplicative white noise process because it is linear in x, but the
“noise term” dW/(t) multiplies x. We can solve this exactly by using Ito’s formula
Let us define a new variable by

y=logx, (4.4.4)
so that
dy =L ax — L (dxy
Ve X T e
= cdW(t) — §cdr. (4.4.5)

This equation can now be directly integrated, so we obtain

1) = Hto) + elW(E) —W(to)] — 3t — 1) (4.4.6)
and hence,
x(t) = x(to) exp {c[W(t) — W(to)] — }*(t — to)}. (4.4.7)

We can calculate the mean by using the formula for any Gaussian variable z
with zero mean

{exp z) = exp ({z*>/2) (4.4.8)

so that
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{x(1)y = {x(to)) exp [3c*(t — to) — }c*(t — )]
= {(x(to)) - (4.4.9)

This result is also obvious from definition, since
{dx) = {cx dW(t)) =0 so that

d{x) _
T—O'

We can also calculate the autocorrelation function

{x()x(s)) = {x(t)*> (exp {c[W(t) + W(s) — 2W(t,)] — 4c(t + 5 — 2t0)})
= (x(to)?pexp (F[W(1) + W(s) — 2W(t)F) — (¢ + s — 21o)]}
= {x(to)>exp {3t + s — 2t + 2min(t, s) — (t + s — 210)]}
= {x(to)*yexp [*min(t — to, s — 1,)] . (4.4.10)
Stratonovich Interpretation. The solution of this equation interpreted as a Stratono-

vich equation can also be obtained, but ordinary calculus would then be valid.
Thus, instead of (4.4.5) we would obtain

dy = ¢ dW(t) f .
and hence,

x(t) = x(to) exp {c[W(t) — W(t)]} - (4.4.11)
In this case,

(x(t)) = <x(to)yexp [1*(t — t0)] (4.4.12)
and

(x(B)x(s)y = {x(t)>exp {3c*[t + s — 2t + 2min(t — t,, s — 1,)]}. (4.4.13)

One sees that there is a clear difference between these two answers.

4.4.3 Complex Oscillator with Noisy Frequency
This is a simplification of a model due to Kubo [4.4] and is a slight generalisation of
the previous example for complex variables. We consider

Z—z = ilw + 2y W)z (4.4.14)
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which formally represents a simple model of an oscillator with a mean frequency
w perturbed by a noise term &(r).
Physically, this is best modelled by writing a Stratonovich equation

(S) dz =i[wdt + /2y dW(1)]z (4.4.15)
which is equivalent to the Ito equation (from Sect. 4.3.6)

dz = [(iw — y)dt + i/2y dW(1)]z . (4.4.16)
Taking the mean va{ue, we see immediately that

dé—tz) = (iw — )<z} (4.4.17)

with the damped oscillatory solution

(2(1)y = exp [(iw — P)11z(0)) - (4.4.18)

We shall show fully in Sect. 6.6, why the Stratonovich model is more appropriate.
The most obvious way to see this is to note that £(¢) would, in practice, be somewhat
smoother than a white noise and ordinary calculus would apply, as is the case in the
Stratonovich interpretation.

Now in this case, the correlation function obtained from solving the original
Stratonovich equation is

{z(t)z(s)y = {z(0)*) exp [(iw — y)(t + s) — 2ymin(t, 5)] - (4.4.19)
In the limit ¢, s — oo, with t + 7 =5,

],i.I.E<Z(t + 17)z(t)y = 0. (4.4.20)
However, the correlation function of physical interest is the complex correlation

(0)z*(s)> = <[ 2(0)|><exp {iw(r — 5) + i/ 2)[W(1) — WS}
= {|2(0)|*)exp {iw(t — ) — [t + s — 2min(z, 5)]}
= (| 2(0)|?yexp [iw(t — 5) — 7|t — s]]. (4.4.21)

Thus, the complex correlation function has a damping term which arises purely
from the noise. It may be thought of as a noise induced dephasing effect, whereby
for large time differences, z(t) and z*(s) become independent.

A realistic oscillator cannot be described by this model of a complex oscillator,
as discussed by van Kampen [4.5]. However the qualitative behaviour is very simi-
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lar, and this model may be regarded as a prototype model of oscillators with
noisy frequency.

4.4.4 Ornstein-Uhlenbeck Process

Taking the Fokker-Planck equation given for the Ornstein-Uhlenbeck process
(Sect.3.8.4), we can immediately write down the SDE using the result of Sect.4.3.4:

dx = — kx dt + /D dW(1), (4.4.22)
and solve this directly. Putting
y=xe, (4.4.23)
then
dy = (dx)d(e**) + (dx)e** + xd(e*")
= [—kx dt + ~/D dW(t)k e*dt
+ [—kx dt + /D dW(t)le* + kx e*dt . (4.4.24)
We note that the first product vanishfs, involving only dt?, and dW(t)dt (in fact, it
can be seen that this will always happen if we simply multiply x by a deterministic
function of time). We get
dy = /D e*dW(t) (4.4.25)

so that integrating and resubstituting for y, we get
t
x(1) = x(0)e™ + /D [ e™* =" dW(1'). (4.4.26)
0

If the initial condition is deterministic or Gaussian distributed, then x(¢) is clearly
Gaussian with mean and variance

{x(t)y = {x(0)ye™ (4.4.27)

var {x(t)} = {{[x(0) — {x(0)>]e™ + /D J e k= dW ()} 2 . (4.4.28)

Taking the initial condition to be nonanticipating, that is, independent of dW(t)
for t > 0, we can write using the result of Sect.4.2.6f

var {x(t)} = var {x(0)}e7*** + D J‘ o2k G—tn gyt
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= {[var{x(0)} — D/2k}e~** + D/2k . (4.4.29)

These equations are the same as those obtained directly by solving the Fokker-
Planck equation in Sect.3.8.4, with the added generalisation of a nonanticipating
random initial condition. Added to the fact that the solution is a Gaussian variable,
we also have the correct conditional probability.

The time correlation function can also be calculated directly and is,

{x(1), x(5)) = var {x(0)}e ¢+ + D(f e~ k= dw(t") fe"‘““" dw(s'))

min(¢, s)

= var {x(0)}e ¥+ DJ' ek (+s=2en gyt
0

-_— 2 —k(t+s 2 —kit—s
= [var{x(O)} - Zk]e ks 4 %€ te=st (4.4.30)

Notice that if kK > 0, as t, s — oo with finite |z — s|, the correlation function be-
comes stationary and of the form deduced in Sect.3.8.4.

In fact, if we set the initial time at — oo rather than 0, the solution (4.4.26)
becomes

x(t) = /D I ek dW(t’) . (4.4.31)

in which the correlation function and the mean obviously assume their stationary
values. Since the process is Gaussian, this makes it stationary.
4.4.5 Conversion from Cartesian to Polar Coordinates

A model often used to describe an optical field is given by a pair of Ornstein-Uh-
lenbeck processes describing the real and imaginary components of the electric
field, i.e.,

dE\(t) = — yE\(t) dt 4+ ¢ dW,(t)

dE,(t) = — yEy(t) dt + € dW,(t) . (4.4.32)
It is of interest to convert to polar coordinates. We set

E\(t) = a(t)cos ¢(t)

Ey(t) = a(t)sin ¢(t) (4.4.33)
and for simplicity, also define

u(t) = log a(t) (4.4.34)
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so that
u(t) + ig(t) = log [Ei(r) + iEx(1)] . (4.4.35)

We then use the Ito calculus to derive

d(E, +iE) 1 [d(E, +iE)P
E, + iE, 2 (E, +iE)y
_ NE +iE) dr + e[dWi (1) + idWy(1)]
 E +IiE (E\ + 1Ey)
1 dW (1) 4 i dW,(1)]?

— > (E 115 (4.4.36)

d(u + i) =

and noting dW,(t)dWy(t) = 0, dW,(t)* = dW,(t)* = dt, it can be seen that the last
term vanishes, so we find

dlu(t) + ig(t)] = —ydt + eexp [—u(t) — ig(OHdWi (1) + i dWa()}.  (4.4.37)
We now take the real part, set a(f) = exp [1(f)] and using the Ito calculus find

da(t) = {—ya(t) + }&2/a(t)} dt + e{dW,(t)cosg(t) + dW(t)sin §(1)]}. (4.4.38)
The imaginary part yields

dg(t) = [¢e/a(t)] [—dW,(t)sin ¢(t)¢+ dWcos 4(1)] . | (4.4.39)
We now define

dW (t) = dW,(t)cos ¢(t) + dW(t)sin §(t)

. (4.4.40)
dW(t) = — dW,(t)sin g(t) + dW,(t)cos §(t) .
We note that this is an orthogonal transformation of the kind mentioned in Sect.
4.3.5, so that we may take dW,(¢) and dW(t) as increments of independent Wiener
processes W, (t) and Wy(t).

Hence, the stochastic differential equations for phase and amplitude are

dag(r) = [e/a(t)ldW (1) (4.4.41a)
da(t) = [—ya(t) + 4e/a(t)]dt + edW(2). (4.4.41b)

Comment. Using the rules given in Sect. 4.3.6 (ii), it is possible to convert both the
Cartesian equation (4.4.32) and the polar equations (4.4.41) to the Stratonovich
form, and to find that both are exactly the same as the Ito form. Nevertheless, a
direct conversion using ordinary calculus is not possible. Doing so we would get
the same result until (4.4.38) where the term [4¢?/a(t)]dt would not be found.
This must be compensated by an extra term which arises from the fact that the
Stratonovich increments dW(t) are correlated with ¢(t) and thus, dW,(¢) and
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dWy(t) cannot simply be defined by (4.4.40). We see the advantage of the Ito
method which retains the statistical independence of d W(¢) and variables evaluated
at time ¢.

Unfortunately, the equations in Polar form are not soluble, as the corresponding
Cartesian equations are. There is an advantage, however, in dealing with polar
equations in the laser, whose equations are similar, but have an added term pro-
portional to a(t)dt in (4.4.41b).

4.4.6 Multivariate Ornstein-Uhlenbeck Process
we define the process by the SDE
dx(t) = — Ax(1)dt + B dW(1), (4.4.42)

(A and B are constant matrices) for which the solution is easily obtained (as in Sect.
444):

x(t) = exp (—At)x(0) + fexp [—A(t — t]B dWL({). (4.4.43)

The mean is
{x(t)) = exp (—At){x(0)> . (4.4.44)

The correlation function follows similarly

Cx(2), x7(s)) = ([x(t) — {x(EP]x(s) — <x(H]D
= exp (—A1){(x(0), x"(0)yexp (—As)

min(t, s)

+ [ exp[—A(r — t")]BBTexp [-AT(s — t)]dt' .  (4.4.45)

The integral can be explicitly evaluated in certain special cases, and for particular
low-dimensional problems, it is possible to simply multiply everything out term
by term. In the remainder we set {(x(0), xT(0)) = 0, corresponding to a deter-
ministic initial condition, and evaluate a few special cases.

a) Suppose AAT = ATA
Then we can find a unitary matrix .S such that

SS* =1
SAS* = SATS* = diag(hy, Ay, ... ) . (4.4.46)

For simplicity, assume ¢ > s. Then
(x(1), x™(s)) = S*G(1, 9)S,

where



110 4. The Ito Calculus and Stochastic Differential Equations

(BB"),

[G(, 5)]:1 = ¥ A

[exp (— Al —s]) —exp(— Lt — 4 5)]. (4.4.47)
b) Variance in Stationary Solution

If 4 has only eigenvalues with positive real part, a stationary solution exists of
the form

x(0) = _f exp [—A(t — )| BAW(1) . (4.4.48)

We have of course

(x,(1)) =0
and (4.4.49)
min(¢, s)
(xi(1), x3(s)) = exp [—A(t — t)]BBTexp [—AT(s — t")]dt’ .
Let us define the stationary covariance matrix ¢ by
o = (x,(t), x3(1)) - (4.4.50)

Then the evaluation of this quantity can be achieved algebraically for
Ao + gAT = [ Aexp[—A(t — t')]BBTexp [—A™(t — t")]dt’
+ [ exp[—A( —&t')]BBTexp [—AT(t — t")]ATdt’
1 d r ’ ’
= | P {exp [—A(t — t")]BBTexp [—A(t — t")]}dt’ .

Carrying out the integral, we find that the lower limit vanishes by the assumed posi-
tivity of the eigenvalues of 4 and hence only the upper limit remains, giving

Ao + gAT = BBT (4.4.51)

as an algebraic equation for the stationary covariance matrix.

¢) Stationary Variance for Two Dimensions
We note that if 4isa2 X 2 matrix, it satisfies the characteristic equation

A* — (Tr A)A + (Det 4) = 0 (4.4.52)

and from (4.4.49) and the fact that (4.4.52) implies exp(— At) is a polynomial of de-
gree 1 in A, we must be able to write

0 = aBB" + B(ABBT + BBTAT) + yABBTAT .

Using (4.4.52), we find (4.4.51) is satisfied if
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a+ (Tr 4)p — (Det A)yy =0
28(Det A) +1=0
B+ (TrAy=0.

From which,

o _ (Det AVBBT + [4 — (Tr A)IJBB"A — (Tr AIJ'
= 2 (Tr 4) (Det 4) '

(4.4.53)

d) Time Correlation Matrix in the Stationary Sate
From the solution of {4.4.49), we see that if t > s,

Cxy(t), x{(s)) = exp [—A(r — 3)] IL exp [—A(s — t")]BBTexp [—AT(s — t")]dt’
— exp [—A(t — s)]a_ t>s (4.4.54a)
and similarly,
= g exp [—AT(s — 1)] t<s (4.4.54b)

which gives the dependence on s — ¢ as expected of a stationary solution. Defining
then

Gt — ) = {xy(1), x5(s)) - (4455)
we see (remembering ¢ = ¢7) that
G,(t — 5)=[G(s— " (4.4.56)

e) Spectrum Matrix in Stationary State
The spectrum matrix turns out to be rather simple. We define similarly to Sect.
1.4.2:

S(w) = 511; _]:9 e T G(1)dr (4.4.57)

1

[T exp [— (iw + A)tle dT + J? o exp [(— iw + AT)t]dr

2n
- 517: [(4 + i0)'o + o(AT — iw)1] .

Hence, (4 + i0)S(w)(AT — iw ) = fli (6AT + Ao) and using (4.4.51), we get

S(w) = El?r (A + i) BBT(AT — i) . (4.4.58)
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f) Regression Theorem

The result (4.4.54a) is also known as a regression theorem in that it states that the
time development G,(7) is for 7 > 0 governed by the same law of time development
of the mean [e.g.,(4.4.44)]. It is a consequence of the Markovian linear nature of
the problem. For

2 16,0l = - (x,(2), X0

= ([—Ax,(D)dr + B dW(7)], x7(0)) (4.4.59)

and since T > 0, d W(7) is uncorrelated with x%(0), so

%[Gs(r)l =—-4G/). (4.4.59)

Thus, computation of G,(r) requires the knowledge of G,(0) = ¢ and the time
development equation of the mean. This result is similar to those of Sect.3.7.4.

4.4.7 The General Single Variable Linear Equation

a) Homogeneous Case
We consider firstly the homogeneous case

dx = [b(t)dt + g(t)dW(t)]x ' ) (4.4.60)
and using the usual Ito rules, write
y =logx (4.4.61)
so that
dy = dx[x — }(dx)*/x*
= [b(t)dt + g(t)dW(1)] — }g(1)*dt, (4.4.62)

and integrating and inverting (4.4.61), we get

X(t) = x(0) exp [ J B(t") — bg(t')de’ + oj g(t')dW(t')} (4.4.63)
= x(0)4(1) (4.4.64)

which serves to define ¢(¢).
We note that [using (4.4.8)]

Qxory = GO {exp |n f16) — hg(71ar" + n  sraw])

— (O exp |n [ b(t')dt" + yn(n — 1) [ g(t'ydr’| . (4.4.65)
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b) Inhomogeneous Case
Now consider

dx = [a(t) 4 b(t)x]dt + [f(t) + g(t)x)dW(t) (4.4.66)
and write
z(t) = x(t)[g(1)]™! (4.4.67)

with ¢(t) as defined in (4.4.64) and a solution of the homogeneous equation
(4.4.60). Then we write

dz = dx{g(t)]™ + x d[g(t)™] + dx dlg(1)™].

Noting that d[g(¢)]™" = —dg(¢)[#(2)]7* + [dg(¢)P[¢(1)]* and using Ito rules, we
find

dz = {[a(t) — f(t)g(D)ldt + f(t)dW (1)} (1)~ (4.4.68)

which is directly integrable. Hence, the solution is
x(t) = ¢(I)IX(0) + ! g(t)7 {la(t) — ft)g(N) dt’ + f(t)aW (1)} . (4.4.69)

¢) Moments and Autocorrelation

It is better to derive equations for the moments from (4.4.66) rather than calculate
moments and autocorrelation directly from the solution (4.4.69).

For we have

dix(ty] = nx(ey-tax(e) + "D eyt

( b))

= nx(t)ydx(t) + x(1)2Lf(t) + g(t)x()dt . (4.4.70)

Hence,

S axteyy = x| + " gy
+ <x<r>"-'>[na(t) + nn — DADEO) @4.7)
+ o Ly,

These equations from a hierarchy in which the nth equation involves the solutions
of the previous two, and can be integrated successively.
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4.4.8 Multivariable Linear Equations

a) Homogeneous Case
The equation is

dx(t) = [B(t)dt + g‘. G.(t)dw (t)]x(t) , (4.4.72)

where B(t), G,() are matrices. The equation is not, in general, soluble in closed form
unless all the matrices B(t), G,(¢") commute at all times with each other, i.e.

G(1G(t") = G,(t)G )
B(t)G(t") = G(t")B(1) (4.4.73)
B(t)B(t") = B(t)B(r)

In this case, the solution is completely analogous to the one variable case and we
have

x(t) = D(t)x(0)

with
o(1) = exp{ J [B() — + 32 G0l + J 5 G (). (4.4.74)
b) Inhomogeneous Case ! >

We can reduce the inhomogeneous case to the homogeneous case in exactly the
same way as in one dimension. Thus, we consider

dx(t) = [A(1) + B(t)x]dt + }; [F (1) + G()x]dW(t) (4.4.75)
and write
() = w@)'x(1), (4.4.76)

where w(¢) is a matrix solution of the homogeneous equation (4.4.72). We first have
to evaluate d[y~']. For any matrix M we have MM ™! = 1, so, expanding to second
order, MdA[M™"] + dM M~ + dM d[M~'] = 0.
Hence, d[M~'] = —[M + dM]™' dM M~! and again to second order

dM = —M'dM M~ + M~'dM M~'dM M™! (4.4.77)
and thus, since () satisfies the homogeneous equation,

diy(1)] = p(O) [~ B() + 3 Gyt — 3 GLOdW )} -

and, again taking differentials
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dy(t) = ()" {[4() — 2 GAOF(Ndt + 3 F()dW (1)} .
Hence,

x(t) = y(2){x(0) + of w()~H{[4@) — Z‘I G(t"F(th)dt' + 33 F(t)dW (1)} }.
(4.4.78)

This solution is not very useful for practical purposes, even when the solution for
the homogeneous equation is known, because of the difficulty in evaluating means
and correlation functions.

4.4.9 Time-Dependent Ornstein-Uhlenbeck Process
This is a particular case of the previous general linear equation which is soluble. It
is a generalisation of the multivariate Ornstein-Uhlenbeck process (Sect.4.4.6) to
include time-dependent parameters, namely,

dx(t) = — A(t)x(t)dt + B(t)dW(t). (4.4.79)

This is clearly of the same form as (4.4.75) with the replacements

A(t)—0

B(t) — —A(t)

23 F()dw(t) — B(t)dW(t) (4.4.80)
G(t) — 0.

The corresponding homogeneous equation is simply the deterministic equation
dx(t) = — A(t)x(t) dt (4.4.81)
which is soluble provided 4(t)A(t") = A(¢")A(¢) and has the solution
x(1) = y(1)x(0)
with
w(t) = exp[— J Ay (4.4.82)
Thus, applying (4.4.78),

x(1) = exp [— | A(t")dt')x(0) + oj fexp [— ij(s)ds]} B@YdW(@).  (4.4.83)

This is very similar to the solution of the time-independent Ornstein-Uhlenbeck
process, as derived in Sect. 4.4.6 (4.4.43).



116 4. The Ito Calculus and Stochastic Differential Equations

From this we have
(1)) = exp [— J At (x(0)) (4.4.84)
(o), x7°(0)) = exp [— J A()d'Kx(0), x(O)Ty exp [— J AT()dt]

+ | dr'expl— [ A(s)sIB()BT(expl— [ AT()ds].  (4.4.89)

The time-dependent Ornstein-Uhlenbeck process will arise very naturally in
connection with the development of asymptotic methods in low-noise systems.



5. The Fokker-Planck Equation

In this rather long chapter, the theory of continuous Markov processes is developed
from the point of view of the corresponding Fokker-Planck equation, which gives
the time evolution of the probability density function for the system. The chapter
divides into two main subjects—single variable and multivariable processes. There
are a large numberof exact results for single variable systems, which makes the
separate treatment of such systems appropriate. Thus Sect. 5.2 and its subsections
treat all aspects of one variable systems, whereas Sect. 5.3 deals with multivariable
systems. However, the construction of appropriate boundary conditions is of
fundamental importance in both cases, and is carried out in general in Sect. 5.2.1.
A corresponding treatment for the boundary conditions on the backward Fokker-
Planck equation is given in Sect. 5.2.4. The remaining subsections of Sect. 5.2 are
devoted to a range of exact results, on stationary distribution functions, properties
of eigenfunctions, and exit problems, most of which can be explicitly solved in the
one variable case.

Section 5.3 and its subsections explore exact results for many variable systems.
These results are not as explicit as for the one variable case. An extra feature which
is included is the concept of detailed balance in multivariable systems, which is
almost trivial in one variable systems, but leads to very interesting conclusions in
multivariable systems.

The chapter concludes with a treatment of exact results in exit problems for
multivariable Fokker-Planck equations.

5.1 Background

We have already met the Fokker-Planck equation in several contexts, starting from
Einstein’s original derivation and use of the diffusion equation (Sect.1.2), again as
a particular case of the differential Chapman-Kolmogorov equation (Sect.3.5.2),
and finally, in connection with stochastic differential equations (Sect.4.3.4). There
are many techniques associated with the use of Fokker-Planck equations which lead
to results more directly than by direct use of the corresponding stochastic differen-
tial equation; the reverse is also true. To obtain a full picture of the nature of diffu-
sion processes, one must study both points of view.

The origin of the name “Fokker-Planck Equation” is from the work of Fokker
(1914) [5.1] and Planck (1917) [5.2] where the former investigated Brownian mo-
tion in a radiation field and the latter attempted to build a complete theory of fluc-
tuations based on it. Mathematically oriented works tend to use the term *“Kolmo-
gorov’s Equation” because of Kolmogorov’s work in developing its rigorous basis
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[5.3]. Yet others use the term “Smoluchowski Equation’ because of Smoluchowski’s
original use of this equation. Without in any way assessing the merits of this termi-
nology, I shall use the term ““Fokker-Planck equation” as that most commonly used
by the audience to which this book is addressed.

5.2 Fokker-Planck Equation in One Dimension

In one dimension, the Fokker-Planck equation (FPE) takes the simple form

2
PO D 4G, 0)fte, 0) + 5 o (B, Of D). 52.1)

In Sects.3.4,5, the FPE was shown to be valid for the conditional probability,
that is, the choice

S(x, 1) = p(x, t| xo, to) (5.2.2)
for any initial x,, t,, and with the initial condition
P(x, to] Xo, to) = 8(x — Xo) . (5.2.3)

However, using the definition for the one time probability
K

p(x, 1) = I dxo p(x, t; Xo, 1) = I dxo p(x, t| Xo, to)p(Xo, to) 5 - (5.2.4)

we see that it is also valid for p(x, t) with the initial condition

p(x7 t)lt-ro = P(x, L) » (525)

which is generally less singular than (5.2.3).

From the result of Sect.4.3.4, we know that the stochastic process described
by a conditional probability satisfying the FPE is equivalent to the Ito stochastic
differential equation (SDE)

dx(t) = Alx(t), tldt + ~/B[x(t), t]dW(t)

and that the two descriptions are to be regarded as complementary to each other.
We will see that perturbation theories based on the FPE are very different from
those based on the SDE and both have their uses.

5.2.1 Boundary Conditions

The FPE is a second-order parabolic partial differential equation, and for solutions
we need an initial condition such as (5.2.5) and boundary conditions at the end of
the interval inside which x is constrained. These take on a variety of forms.
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It is simpler to derive the boundary conditions in general, than to restrict con-
sideration to the one variable situation. We consider the forward equation

) 1 0?
0.p(z,1) = — “2 5z, 4i (2, 0p(z, 1) + & Z]‘, 7.0z, By, (z, )p(z, t) (5.2.6)
We note that this can also be written
op(z, t
PeD | 50 ~ @) =0 (52.7)
where we define the probability current

112, 0) = A @ 0@, 1) — 5 35 By (2 0p(z, 1) (528)

Equation (5.2.7) has the form of a local conservation equation, and can be written
in an integral form as follows. Consider some region R with a boundary § and
define

P(R, 1) = Ikdz p(z, 1)

then (5.2.7) is equivalent to

PR _ _ [ 4S n-d(z, 1) (5.2.9)
ot 5
where n is the outward pointing normal to S. Thus (5.2.9) indicates that the total
loss of probability is given by the surface integral of J over the boundary of R. We
can show as well that the current J does have the somewhat stronger property, that
a surface integral over any surface § gives the net flow of probability across that
surface.

Fig. 5.1. Regions used to demonstrate that the
probability current is the flow of probability

For consider two adjacent regions R, and R,, separated by a surface S,,. Let
S, and §, be the surfaces which, together with S,, enclose respectively R, and R,
(see Fig. 5.1).

Then the net flow of probability can be computed by noting that we are dealing
here with a process with continuous sample paths, so that, in a sufficiently short
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time At, the probability of crossing §,, from R, to R, is the joint probability of
being in R, at time ¢ and R, at time ¢ + At,

= Ide dy p(x,t + At; p, 1).
Ry

The net flow of probability from R, to R, is obtained by subtracting from this the
probability of crossing in the reverse direction, and dividing by A¢; i.e.

lim L[ de [ dy[p(x, t + At; y, t) — p(p, t + At; x, 1)]. (5.2.10)
a0 At Ry Ry
Note that
[dx[dypx, t;y,1)=0
Ry Ry

since this is the probability of being in R, and R, simultaneously. Thus, we can
write

(5.2.10) = [ dx [ dy [0, p(x,t'; p, 1) — Ou p(p, t'; X, )],
Ry Ry

and using the Fokker-Planck equation in the form (5.2.7)

F F
= — de 2.-3?,. J (%, t; Ry 1) +y ;[zdy ‘,Ea—y, J.(y,t; Ry, 1) (5.2.11)

-

where J; (x, t; R,, t) is formed from
p(x, t; Ry t) = [ dy p(x, t;p, 1)
Ry

in the same way as J(z, t) is formed from p(z,¢)in(5.2.8) and J; (y, t; R,, t) is defined
similarly. We now convert the integrals to surface integrals. The integral over S,
vanishes, since it will involve p(x, t; R,, t), with x not in R, or on its boundary
(except for a set of measure zero.) Similarly the integral over S, vanishes, but those
over ), do not, since here the integration is simply over part of the boundaries of
R, and R,.

Thus we find, the net flow from R, to R, is

sj' dSn-{J(x, t; R, t) + J(x, t; Ry, 1)}
12

and we finally conclude, since x belongs the union of R, and R,, that the net flow
of probability per unit time from R, to R,

= lim A,fdx f dy [p(x,t + At; y, 1) — p(y,t + At; x,1)] —f ds m-J(x, 1)
—~0

where n points from R, to R, (5.2.12)
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We can now consider the various boundary conditions separately.

a) Reflecting Barrier
We can consider the situation where the particle cannot leave a region R, hence
there is zero net flow of probability across S, the boundary of R. Thus we require

n-J(z,t)=0 forz& S, n=normaltosS (5.2.13)

where J(z, t) is given by (5.2.8).
Since the particle cannot cross .S, it must be reflected there, and hence the
name reflecting barrjer for this condition.

b) Absorbing Barrier
Here, one assumes that the moment the particle reaches S, it is removed from the
system, thus the barrier absorbs. Consequently, the probability of being on the
boundary is zero, i.e.

p(z,t)=0 forze S (5.2.14)

c) Boundary Conditions at a Discontinuity

It is possible for both the 4, and B, coefficients to be discontinuous at a surface S,
but for there to be free motion across S. Consequently, the probability and the
normal component of the current must both be continuous across S,

n-J(z)|s, = n-J(2)|s (5.2.15)

p@)|s, = p(2)|s_ (5.2.16)

where 8., §_, as subscripts, mean the limits of the quantities from the left and right
hand sides of the surface.

The definition (5.2.8) of the current, indicates that the derivatives of p(z) are
not necessarily continuous at .S.

d) Periodic Boundary Condition

We assume that the process takes place on an interval [a, b] in which the two end
points are identified with each other. (this occurs, for example, if the diffusion is
on a circle). Then we impose boundary conditions derived from those for a discon-
tinuity, i.e.,

I: lim p(x, t) = lim p(x, t) (5.2.17)
x—b— x—a+
II: lim J(x, t) = llm J(x, t). (5.2.18)

x—b—

Most frequently, periodic boundary conditions are imposed when the functions
A(x, t) and B(x, t) are periodic on the same interval so that we have

Ab, t) = A(a, 1) (5.2.19)
B(b, t) = B(a, t)
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and this meansthat I and II simply reduce to an equality of p(x, ¢) and its derivatives
at the points @ and b.

¢) Prescribed Boundaries

If the diffusion coefficient vanishes at a boundary, we have a situation in which
the kind of boundary may be automatically prescribed. Suppose the motion occurs
only for x > a. If a Lipschitz condition is obeyed by A(x, ) and Y B(x, ) atx=a
(Sect. 4.3.1) and B (x, ?) is differentiable at x = a then

0;B(a,1)=0. (5.2.20)
The SDE then has solutions, and we may write

dx()=A(x,)dt+ | B(x,t) dW (1) (5.2.21)

In this rather special case, the situation is determined by the sign of A4 (x, ¢). Three
cases then occur, as follows.

i) Exit boundary. In this case, we suppose
A(a, ) <0 (5.2.22)

so that if the particle reaches the point a, it will certainly proceed out of region to
x < a. Hence the name “exit boundary”

ii) Entrance boundary. Suppose ¥
A(a, 1) > 0. (5.2.23)

In this case, if the particle reaches the point a, the sign of A(aq, ) is such as to
return it to x > @; thus a particle placed to the right of a can never leave the region.
However, a particle introduced at x = a will certainly enter the region. Hence the
name, “entrance boundary”.

iii) Natural boundary. Finally consider
A(a, t)=0. (5.2.24)

The particle, once it reaches x = a, will remain there. However it can be demon-
strated that it cannot ever reach this point. This is a boundary from which we can
neither absorb nor at which we can introduce any particles.

Feller [5.4] has shown that in general the boundaries can be assigned to one of
the four types; regular, entrance, exit and natural. His general criteria for the
classification of these boundaries are as follows. Define

f(x) =exp|—-2 } ds A(s)/B (s) (5.2.25)
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g(x) =2/[B(x)f(x)] (5.2.26)
Iy (x) = £(x) [ g(s) ds (5.2.27)
hy (x) =g (x) If(s) ds. (5.2.28)

Here x; € (a, b), and is fixed. Denote by
2 (xy, x32) (5.2.29)

the space of all functions integrable on the interval (x|, x,); then the boundary at a
can be classified as

I: Regular: if f(x) € #(a, xo), and g(x) € 7 (a, xq)
II: Exit: if g(x) ¢ _~(a, x¢), and hy(x) € 7 (a, xq)
III: Entrance : if g(x) € ~(a, x¢), and h;(x) € -~ (a, xq)

IV: Natural : all other cases .

It can be seen from the results of Sect. 5.2.2 that for an exit boundary there is no
normalisable stationary solution of the FPE, and that the mean time to reach the
boundary, (5.2.161), is finite. Similarly, if the boundary is exit, a stationary
solution can exist, but the mean time to reach the boundary is infinite. In the case
of a regular boundary, the mean time to reach the boundary is finite, but a
stationary solution with a reflecting boundary at a does exist. The case of natural
boundaries is harder to analyse. The reader is referred to [5.5] for a more complete
description.

f) Boundaries at Infinity
All of the above kinds of boundary can occur at infinity, provided we can si-
multaneously guarantee the normalisation of the probability which, if p(x) is rea-
sonably well behaved, requires

lim p(x,t)=0. (5.2.30)

If 9,p(x) is reasonably well behaved (i.e., does not oscillate infinitely rapidly as
X — 00),

lim 8, p(x, 1) = 0 (5.2.31)

so that a nonzero current at infinity will usually require either A(x, t) or B(x, t) to
become infinite there. Treatment of such cases is usually best carried out by
changing to another variable which is finite at x = co.

Where there are boundaries at x = 4 oo and nonzero currents at infinity are
permitted, we have two possibilities which do not allow for loss of probability:
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i) J(+ 00,1) =0 (5.2.32)
i) J(+ o0, 1) = J(—o0, 1) . (5.2.33)

These are the limits of reflecting and periodic boundary conditions, respectively.

5.2.2 Stationary Solutions for Homogeneous Fokker-Planck Equations

We recall (Sect.3.7.2) that in a homogeneous process, the drift and diffusion coef-
ficients are time independent. In such a case, the equation satisfied by the stationary
distribution is

d 1 d?
75 [AP] — 5 75 [BO)p(x)] = 0 (5.2.34)
which can also be written simply in terms of the current (as defined in Sect.5.2.1)

()
dx

=0 (5.2.35)
which clearly has the solution

J(x) = constant. (5.2.36)
Suppose the process takes place on an interval (a, b). Then we must have

J(@@) = J(x) =J(b) = | . (5.2.37)
and if one of the boundary conditions is reflecting, this means that both are reflect-
ing, and J = 0.

If the boundaries are not reflecting, (5.2.37) requires them to be periodic. We
then use the boundary conditions given by (5.2.17,18).

a) Zero Current—Potential Solution
Setting J = 0, we rewrite (5.2.37) as

AWP) = 4 L (BPI] = 0 (5238)
for which the solution is

P = 3o )eXP[2 f ax ax)BeY, (5.2.39)
where .#"is a normalisation constant such that

f dx p(x) = 1. (5.2.40)
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Such a solution is known as a potential solution, for various historical reasons, but
chiefly because the stationary solution is obtained by a single integration (the full
significance of this term will be treated in Sect.5.3.3).

b) Periodic Beundary Condition
Here we have nonzero current J and we rewrite (5.2.36) as

A@P.L3) — L (BP0 = J (5:2.41)

However, J is not arbitrary, but is determined by normalisation and the periodic
boundary condition

ps(a) = p(b) ' (5.2.42)
J(a) = J(b). (5.2.43)

For convenience, define

w(x) = exp [25 dx' A(x')/B(:] . (5.2.44)
Then we can easily integrate (5.2.41) to get

PLIBIIW() = p@B@I(@ ~2Jf dx'fy(x) (5.2.45)
By imposing the boundary condition (5.2.42) we find that

7 = BOW® — B @lp@) || div() (5.246)

so that

f dx' B(b) f dx’ B(a)
a ! b x !
ps(x) = p.(a) W(x)gﬁx;,, dzf(x)W(a) . (5.2.47)
w(x)] p(x)

c) Infinite Range and Singular Boundaries

In either of these cases, one or the other of the above possibilities may turn out to
be forbidden because of divergences, etc. A full enumeration of the possibilities is,
in general, very complicated. We shall demonstrate these by means of the examples
given in the next section.
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5.2.3 Examples of Stationary Solutions

a) Diffusion in a Gravitational Field
A strongly damped Brownian particle moving in a constant gravitational field is
often described by the SDE (Sect.6.4)

dx = —gdt + /D dW(t) (5.2.48)
for which the Fokker-Planck equation is

op _

3 0*p
3 ( p) + (5.2.49)

ax2

On the interval (a, b) with reflecting boundary conditions, the stationary solution is
given by (5.2.39), i.e.

ps(x) = A exp [—2gx/D], (5.2.50)

where we have absorbed constant factors into the definition of /"

Clearly this solution is normalisable on (a, b) only if a a is finite, though b may
be infinite. The result is no more profound than to say that particles diffusing in a
beaker of fluid will fall down, and if the beaker is infinitely deep, they will never
stop falling! Diffusion upwards against gravity is possible for any distance but
with exponentially small probability. .

Now assume periodic boundary conditions on (g, b). Substitution into (5.2.47)
yields -

ps(x) = p(a); (5.2.51)

a constant distribution.
The interpretation is that the particles pass freely from a to b and back.

b) Ornstein Uhlenbeck Process
We use the notation of Sect.3.8.4 where the Fokker-Planck equation was

@__ a’p
3 —axen + 5 Daxw A (5.2.52)

whose stationary solution on the interval (a, b) with reflecting barriers is

ps(x) = A exp (—kx?/D) . (5.2.53)
Provided k > 0, this is normalisable on (— oo, o0). If K < 0, one can only make
sense of it on a finite interval.

Suppose

a=—b<0. (5.2.54)
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Then in this case,
k 2 2
w(x) = exp ) (x* — a?) (5.2.55)

and if we consider the periodic boundary condition on this interval, by noting
y(a) = y(— a), (5.2.56)

we find that

ps(x) = ps(a)w(xz/w(a)

— pia) exp| 35 (< — )|

so that the symmetry yields the same solution as in the case of reflecting barriers.
Letting a — oo, we see that we still have the same solution. The result is also true
if @a — oo independently of b — —co, provided k > 0.

¢) A Chemical Reaction Model
Although chemical reactions are normally best modelled by a birth-death master
equation formalism (as in Chap. 7), approximate treatments are often given by
means of a FPE. The reaction

X+ Ad=—2X (5.2.57)

is of interest since it possesses an exit boundary at x = 0 (where x is the number
of molecules of X). Clearly if there is no X, a collision between X and A cannot
occur so no more X is produced.

The FPE is derived in Sect.7.6.1 and is

0:p(x, 1) = —8,[(ax — x*)p(x, 1)] + % 3(ax + x*)p(x, 1)] . (5.2.58)

We introduce reflecting boundaries at x = @ and x = f. In this case, the stationary
solution is

po(x) = e72%(a 4 x)**"'x7! (5.2.59)

which is not normalisable if @ = 0. The pole at x = 0 is a result of the absorption
there. In fact, comparing with (5.2.28), we see that

B0, t) = (ax + x¥);ee =0
AQO, 1) = (ax — x¥)yo =0 (5.2.60)
0,B0,1) = (a+ 2x)ao >0

so we indeed have an exit boundary. The stationary solution has relevance only
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if @ > Osince it is otherwise not normalisable. The physical meaning of a reflecting
barrier is quite simple: whenever a molecule of X disappears, we simply add
another one immediately. A plot of p,(x) is given in Fig. 5.2. The time for all x to
disappear is in practice extraordinarily long, and the stationary solution (5.2.59)
is, in practice, a good representation of the distribution except near x = 0.

ps (x)

Fig. 5.2. Non-normalisable ‘‘stationary’’ p(x) for the
reaction X + A = 2X

X

5.2.4 Boundary Conditions for the Backward Fokker-Planck Equation

We suppose that p(x, t| x’, t") obeys the forward Fokker-Planck equation for a set
of x,  and x’, t', and that the process is confined to a region R with boundary S.
Then, if s is a time between ¢ and ¢t’,

0 , I
0= 2 (s, 11, 1) = o [ dyp(x, 11y, 902, 518, 1), (5261)

where we have used the Chapman-Kolmogorov equation. We take the derivative
0/0s inside the integral, use the forward Fokker-Planck equation for the second
factor and the backward equation for the first factor. For brevity, let us write

p(y,s) = p(y, s|x', t") (5.2.62)
p(y,s)=p(x,t|y,s).

Then,
0=[dy [— Zi (A:ip) + 23 O (B p)}i) (5.2.63)
R G a)’r ! ij ay,ay 4
+[]-2ad w5,
R i ! ay i,j y ay,
and after some manipulation

=] dyZaa[ App + =5 2{ ai up)—pBug—i]} (5.2.64)
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=£‘st,{ [ Aip + Z (Bup)]]
——IIZdSp(ZB‘@) (5.2.65)
247 PP \5 Py -

We now treat the various cases individually.

a) Absorbing Boundaries

This requires p = 0 on the boundary. That it also requires 5(y, t) = 0 on the boun-
dary is easily seen to be consistent with (5.2.65) since on substituting p = 0 in that
equation, we get

op

0= J‘p Z ds,; B,ja (5.2.66)
However, if the boundary is absorbing, clearly
p(x, t|y,s) =0, for y € boundary (5.2.67)

since this merely states that the probability of X re-entering R from the boundary
is zero.

b) Reflecting Boundaries
Here the condition on the forward equation makes the first integral vanish in
(5.2.65). The final factor vanishes for arbitrary p only if

0
> m:Biy(¥) 5, [Px, 1]y, )] =0. (5.2.68)
iJ y.’
In one dimension this reduces to
ip(x tly,s)=0 (5.2.69)
ay ’ ’

unless B vanishes.

¢) Other Boundaries
We shall not consider these in this section. For further details see [5.4].

5.2.5 Eigenfunction Methods (Homogeneous Processes)

We shall now show how, in the case of homogeneous processes, solutions can most
naturally be expressed in terms of eigenfunctions. We consider reflecting and
absorbing boundaries.

a) Eigenfunctions for Reflecting Boundaries

We consider a Fokker-Planck equation for a process on an interval (a, b) with
reflecting boundaries. We suppose the FPE to have a stationary solution p,(x) and
the form
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0:p(x, 1) = —0,[A(X)p(x, 1)] + } 0% [B(x)p(x, 1)] . (5.2.70)
We define a function g(x, t) by

p(x, t) = p(x)q(x, 1) (5.2.71)
and, by direct substitution, find that g(x, t) satisfies the backward equation

0.9(x, t) = A(x)3.9(x, 1) + } B(x)d%q(x, 1) . (5.2.72)
We now wish to consider solutions of the form

p(x, t) = Py(x)e™* (5.2.73)

q(x, 1) =Qx(x)e™ (5.2.74)
which obey the eigenfunction equations

—0:[AX)Py(x)] + § OAUB(X)Py(X)] = —APy(x) (5.2.75)

A(x)3:Q(x) + } B(x)330u(x) = —A'Qu(x) . (5.2.76)

Then we can straightforwardly show by partial integration that
R K]
(X' — 1) [ dxPy(x)Qu(x) = [Qu (] — AX)Ps(x) + } 8[BE)P1(x)]}

— § B(x)Px(x)0: Q1 ()2, (5.2.77)

and using the reflecting boundary condition on the coefficient of Q;,(x), we see that
it vanishes. Further, using the definition of g(x, ) in terms of the stationary solution
(5.2.71), it is simple to show that

1 B(x)0,0u(x) = —A(X)Pu(x) + } 0.[B(x)P1(x)] (5.2.78)

so that term vanishes also. Hence, the Q;(x) and P,(x) form a bi-orthogonal system
b
[ dx Py(x)Qulx) = 8.4 (5.2.79)
or, there are two alternative orthogonality systems,

fdx pU(X)Q(X)0u(x) = By (52.80)

fdxp (] Par)Parx) = B0 - (5.2.81)
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It should be noted that setting = A’ = 0 gives the normalisation of the stationary
solution p(x) since

Po(x) = pi(x) (5.2.82)
Ou(x)=1. (5.2.83)

Using this orthogonality we can write any solution in terms of eigenfunctions. For if

plx, 1) = g A Py(x)e™, (5.2.84)
then »
f dx Qx(x)p(x, 0) = 4, . (5.2.85)

For example, the conditional probability p(x, t|x,, 0) is given by the initial con-
dition

p(x, 0| x,, 0) = 8(x — xo) (5.2.86)
so that

4y = [ dx Qu(IB(x — x0) = Qu(xo) (5.2.87)
and hence,

p(x, 1%, 0) = 3 P(x)Qu(xo)e™ . (5.2.88)

We can write the autocorrelation function quite elegantly as

{x()x(0)) = [ dx [ dxo xx0p(x, t] X0, 0)ps(X) (5.2.89)
=3 [f dx xPy(x)Pe™, (5.2.90)

where we have used the definition of Q;(x) by (5.2.74).

b) Eigenfunctions for Absorbing Boundaries

This is very similar. We define P, and Q; as above, except that p,(x) is still the sta-
tionary solution of the Fokker-Planck equation with reflecting boundary conditions.
With this definition, we find that we must have

Pi(a) = Qu(a) = Py(b) = Q;(b) =0 (5291)
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and the orthogonality proof still follows through. Eigenfunctions are then com-
puted using this condition and the eigenfunction equations (5.2.75, 76) and all other
results look the same. However, the range of A does not include A = 0, and hence
p(x, t|x,,0) — 0 as t — oo.

5.2.6 Examples

a) A Wiener Process with Absorbing Boundaries
The Fokker-Planck equation

dp=1409lp (5.2.92)
it treated on the interval (0, 1). The absorbing boundary condition requires
p©, 1) =p(1,1) =0 (5.2.93)

and the appropriate eigenfunctions are sin (nnx) so we expand in a Fourier sine
series

p(x, 1) = 3" by(¢) sin(nmx) (5.2.94)
n=1
which automatically satisfies (5.2.93). The initial condition is chosen so that

p(x, 0) = 8(x — xo) (5.2.95)

for which the Fourier coefficients afe
1
b,(0) = 2 [ dx 8(x — x,) sin (nmx) = 2 sin (nmx,) . (5.2.96)
1]

Substituting the Fourier expansion (5.2.94) into (5.2.92) gives

bo(t) = —Aba(t) (5.2.97)
with
A, = n*n?[2 (5.2.98)

and the solution
b,(t) = b,(0)exp(— 4,t) . (5.2.99)

So we have the solution [which by the initial condition (5.2.95) is for the conditional
probability p(x, t|x,, 0)]

p(x, t|x,,0) =2 i exp(— A,t) sin (nmx,) sin (nmnx) . (5.2.100)
n=1
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b) Wiener Process with Reflecting Boundaries
Here the boundary condition reduces to [on the interval (0, 1)]

0,p(0,1) =0.p(1,t) =0 (5.2.101)

and the eigenfunctions are now cos (nmx), so we make a Fourier cosine expansion
p(x, t) = % a, + i a,(t) cos (nmx) (5.2.102)
n=1

with the same initial condition

p(x,0) = &(x — xP) (5.2.103)
so that
a,(0) =2 _|1 dx cos (nmx)d(x — x,) = 2cos (nmx,) . (5.2.104)

In the same way as before, we find

a,(t) = a,0) exp (— A1) (5.2.105)
with

Ay = n*2[2 (5.2.106)
so that

p(x, t]x0, 0) = 1 + 22}1 cos (nmxo) cos (nmx) exp (— A1) . (5.2.107)

As t — co, the process becomes stationary, with stationary distribution

Dps(x) = lrljg p(x, t]x,,0) = 1. (5.2.108)
We can compute the stationary autocorrelation function by

{x()x(0)), = i;"dx dxo xxop(x, t] X0, 0)ps(X) (5.2.109)
and carrying out the integrals explicitly,

KOXO) = 5 + B 5 exp(— L) @ + D7 (5.2.110)

We see that as t — oo, all the exponentials vanish and

(x(t)x(0)ys — ¢ = [ (5.2.111)
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and as t — O,
OO~ G+ HZen+ D= = ) (5.2.113)

when one takes account of the identity (from the theory of the Riemann zeta-func-
tion)

4

Sn 1)t = (5.2.114)

n=0

¢) Ornstein-Uhlenbeck Process
As in Sect.3.8.4, the Fokker-Planck equation is

0,p(x, t) = 0,lkxp(x, )] + § Doip(x, 1) . (5.2.115)

The eigenfunction equation for Q; is
2k
a0, - 2% a0, +%2 0,0 (52.116)

and this becomes the differential equation for Hermite polynomials [5.6] on making
the replacement

y = xa/k[D
d}Q; — 2yd, 0, + 2AK)Q, = . (5.2.117)

We can write
0, = (2'n))""*H,(x/k[D) (5.2.118)
where

A= nk, (5.2.119)

and these solutions are normalised as in (5.2.79-81).
The stationary solution is, as previously found,

p«(x) = (k/nD)'"*exp (— kx*/D) (5.2.120)
and a general solution can be written as

plx, t) = 2 ~/[k[(2’n'nD)] exp (—kx*/D)H,(x~/k[D)e"*' 4, (5.2.121)
with

— _°f dx p(x, O)H,(x+/ETD)(2"n1)112 | (5.2.122)
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The result can also be obtained directly from the explicit solution for the condi-
tional probability given in Sect.3.8.4 by using generating functions for Hermite
polynomials. One sees that the time scale of relaxation to the stationary state is
given by the eigenvalues

A, = nk. (5.2.123)

Here, k is the rate constant for deterministic relaxation, and it thus determines the
slowest time in the relaxation. One can also compute the autocorrelation function
directly using (5.2.90). We use the result [5.6] that

H,(y) = 2y (5.2.124)

so that the orthogonality property means that only the eigenfunction corresponding
to n = 1 has a nonzero coefficient. We must compute

[ x Py (x)dx = °f /k](2nD) exp (—kx*/D)(2x~/k/D)x (5.2.125)
= +/D[2k
so that
x(®)x(0)), = 2% ek, (5.2.126)

as found previously in Sects.3.8.4, 4.4.4.

d) Rayleigh Process

We take the model of amplitude fluctuations developed in Sect.4.4.5. The Fokker-
Planck equation is

0:p(x, t) = 0,[(yx — p/x)p(x, t)] + udip(x,t), (5.2.127)
where
u=gY2. (5.2.128)

The range here is (0, o) and the stationary solution (normalised)

ps(x) = (yx/u) exp (—yx*/2u) . (5.2.129)
The eigenfunction equation for the Q,(x) is

d:0; + (1/x — yx/wd.Qy + (A/w)Q1 = 0. (5.2.130)
By setting

z=x2u, (5.2.131)
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we obtain

2d.*Qy + (1 — 2)d.Q; + (2/29)0, = 0. (5.2.132)
This is the differential equation for the Laguerre polynomials [5.6] provided

A=12ny. (5.2.133)
We can write

0i(x) = L,(yx*/2p) (5.2.134)

which is normalised. Hence, the conditional probability is

oo B0
pix, 110, 0) = 3 Hexp (50 L, (B9 L (57 (5:2.135)

We can compute the autocorrelation function by the method of (5.2.90):

XD = 2 [jxdx—exp ( zyﬂ")Ln (yz—’;:)] exp(— 2nyt) (5.2.136)
and using
[z zrerL(2) = (—17Ta + (%), (5.2.137)

we find for the autocorrelation fungtion

() xO)) = 7“ i e (%) exp(— 2nyt). (5.2.138)

5.2.7 First Passage Times for Homogeneous Processes

It is often of interest to know how long a particle whose position is described by
a Fokker-Planck equation remains in a certain region of x. The solution of this
problem can be achieved by use of the backward Fokker-Planck equation, as
described in Sect. 3.6.

a) Two Absorbing Barriers
Let the particle be initially at x at time ¢ = 0 and let us ask how long it remains
in the interval (a, b) which is assumed to contain x:

a<x<b (5.2.139)

We erect absorbing barriers at a and b so that the particle is removed from the
system when it reaches a or b. Hence, if it is still in the interval (a, b), it has never
left that interval.

Under these conditions, the probability that at time ¢ the particle is still in
(a, b) is
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fdx’p(x', t|x,0) = G(x,t). (5.2.140)
Let the time that the particle leaves (a, b) be T. Then we can rewrite (5.2.140) as

Prod(T > t) = fdx'p(x’, t|x,0) (5.2.141)

which means that G(x, t) is the same as Prob(T > ¢). Since the system is time
homogeneous, we can write

P, t]x,0) = p(x/, 0] x, —1) (5.2.142)
and the backward Fokker-Planck equation can be written

a.p(x', t|x,0) = A(x)d,p(x’, t| x,0) + % B(x)d2p(x, t| x, 0) (5.2.143)
and hence, G(x, t) obeys the equation

9,G(x, t) = A(x)d.G(x, t) + % B(x)02G(x, t) . (5.2.144)

The boundary conditions are clearly that
p(x',0]x, 0) = &(x — x')
and hence,

G(x,0)=1 a<x<b (5.2.145)

=0 elsewhere
and if x = a or b, the particle is absorbed immediately, so

Prob(T > 1) =0 when x =aorb, ie.,
G(a, t) = G(b,t) = 0. (5.2.146)

Since G(x, t) is the probability that T > ¢, the mean of any function of T is

T = — ;f ANdG(x, 1) . (5.2.147)
Thus, the mean first passage time

T(x) = (T (5.2.148)
is given by

T(x) = — [ 18,G(x, t)dt (5.2.149)
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G(x, t)dt (5.2.150)

Otem

after integrating by parts.
Similarly, defining

T(x) =<T", (5.2.151)
we find
Ty(x) = [1"'G(x, 1)dt . (5.2.152)

We can derive a simple ordinary differential equation for 7((x) by using (5.2.150)
and integrating (5.2.144) over (0, oo). Noting that

[ 8, G(x, t)dt = G(x, ) — G(x,0) = —1, (5.2.153)
0
we derive
A(X)3,T(x) + } B(X)a2T(x) = —1 (5.2.154)
with the boundary condition ¥
T(a) = T(b) = 0. ‘ (5.2.155)

Similarly, we see that
— nT,_y(x) = A(x)3.T.(x) + } B(x)3:T,(x) (5.2.156)

which means that all the moments of the first passage time can be found by repeated
integration.

Solutions of the Equations. Equation (5.2.154) can be solved directly by integration.
The solution, after some manipulation, can be written in terms of

w() = exp ] dr24(x)/BE| ‘ (5.2.157)
We find
fdy\t dy ydzy(z) (¢ dy\¢dy % dzy(z)
T(x):z[(! v Lot | ) utn ! 5| 52158

dy
J w(y)
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b) One Absorbing Barrier
We consider motion still in the interval (a, ) but suppose the barrier at a to be re-
flecting. The boundary conditions then become

9.G(a,t) =0 (5.2.159a)
G, t)=0 (5.2.159b)

which follow from the conditions on the backward Fokker-Planck equation
derived in Sect.5.2.4. We solve (5.2.154) with the corresponding boundary condi-
tion and obtain

? a reflecting
dy 1y(2) :
T(x) =2 _[ — j 3G) dz b absorbing (5.2.160)
v0)e a<b
Similarly, one finds
v (z) b reflecting
j' J' a absorbing (5.2.161)
w(y); B(z ) a<b

c) Application—Escape Over a Potential Barrier
We suppose that a point moves according to the Fokker-Planck equation

0.p(x, 1) = 3,[U'(x)p(x, )] + DILp(x, 1) . (5.2.162)

The potential has maxima and minima, as shown in Fig. 5.3. We suppose that
motion is on an infinite range, which means the stationary solution is

ps(x) = A" exp [ U(x)/D] (5.2.163)

which is bimodal (as shown in Fig. 5.3) so that there is a relatively high probability
of being on the left or the right of b, but not near 5. What is the mean escape time
from the left hand well? By this we mean, what is the mean first passage time from
ato x , where x is in the vicinity of 5? We use (5.2.160) with the substitutions

b —_— xO

a— —oo (5.2.164)

X —a

so that

T(a— x,) = % T dy exp[U(y)/D] _’L exp[— U(z)/D]dz . (5.2.165)



140 5. The Fokker-Planck Equation

(a) (b)
b
U(x) ps(x)
: b
x X
(c)
Tla=x)

Fig. 5.3. (a) Double well potential U(x);
(b) Stationary distribution p,(x);
(¢) Mean first passage time from a to x, T(a — x,)

If the central maximum of U(x) is large and D is small, then éxp [U(y)/D] is sharply
peaked at x = b, while exp[—U(z)/D] is very small near z = b. Therefore,
j'{, exp [—U(z)/D)dz is a very slowly varying function of y near y = b. This means
that the value of the integral [* _exp[— U(z)/D]dz will be approximately constant
for those values of y which yield a value of exp [U(y)/D] which is significantly
different from zero. Hence, in the inner integral, we can set y = b and remove
the resulting constant factor from inside the integral with respect to y. Hence,
we can approximate (5.2.165) by

l b xQ
T(a — x,) = [3 _j' dy exp[— U(z)/D]}I dy exp [U(y)/D] . (5.2.166)
Notice that by the definition of p,(x) in (5.2.163), we can say that
b
[ dy exp[— U(z)/D] = n,JN" (5.2.167)

which means that n, is the probability that the particle is to the left of b when the
system is stationary.

A plot of T(a — x,) against x, is shown in Fig. 5.3 and shows that the mean first
passage time to x, is quite small for x, in the left well and quite large for x, in the
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right well. This means that the particle, in going over the barrier to the right well,
takes most of the time in actually surmounting the barrier. It is quite meaningful
to talk of the escape time as that time for the particle, initially at a, to reach a point
near c, since this time is quite insensitive to the exact location of the initial and
final points. We can evaluate this by further assuming that near 4 we can write

U(x) = U(b) — % ("T"b) ’ (5.2.168)

and near a

U(x) = U@) + %(" - ") i (5.2.169)
The constant factor in (5.2.166) is evaluated as

j dzexp[~UG)IDI ~ | dz exp[ g _ (22;;2’)2] (5.2.170)

~ ay/3%D exp [— U(a)/D] (5.2.171)

and the inner factor becomes, on assuming X, is well to the right of the central point
b,

uk) —by
J' dy exp U(y)/D ~ _|' dy exp[ D 2D5? ] (5.2.172)
= 8./27D exp [U(b)/D] . (5.2.173)

Putting both of these in (5.2.166), we get
T(a — x,) = 2adn exp {[U(b) — U(a))/D}. (5.2.174)

This is the classical Arrhenius formula of chemical reaction theory. In a chemical
reaction, we can model the reaction by introducing a coordinate such that x = a
is species A and x = c is species C. The reaction is modelled by the above diffusion
process and the two distinct chemical species are separated by the potential barrier
at b. In the chemical reaction, statistical mechanics gives the value

D =kT, (5.2.175)

where k is Boltzmann’s constant and T is the absolute temperature. We see that the
most important dependence on temperature comes from the exponential factor
which is often written

exp (AE/KT) (5.2.176)

and predicts a very characteristic dependence on temperature. Intuitively, the
answer is obvious. The exponential factor represents the probability that the energy
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will exceed that of the barrier when the system is in thermal equilibrium. Those
molecules that reach this energy then react, with a certain finite probability.
We will come back to problems like this in great detail in Chap.9.

5.2.8 Probability of Exit Through a Particular End of the Interval

What is the probability that the particle, initially at x in (a, b), exits through aq,
and what is the mean exit time?

The total probability that the particle exits through a after time ¢ is given by
the time integral of the probability current at a. We thus define this probability by

g.(x, 1) = — [ dt' J(a, '|x, 0) (52.177)
= Tdt' {—A(a)p(a, t’'| x, 0) + 43,[B(a)p(a, t’'|x, 0)]} (5.2.178)

!

(the negative sign is chosen since we need the current pointing to the left) and
gu(x, 1) = [ dt’' {A(B)p(b, t'| x, 0) — $3,[B(b)p(b, t'| x, 0)]} . (5.2.179)
t

These quantities give the probabilities that the particle exits through a or b after
time ¢, respectively. The probability that (given that it exits through a) it exits after
time 7 is

Prob(T, > 1) = gu(x, t)/g.(x, 05‘- (5.2.180)

.

We now find an equation for g,(x, t). We use the fact that p(a, t| x, 0) satisfies a
backward Fokker-Planck equation. Thus,

A(x)9.g.(x, t) + 1B(x)d2g.(x, t) = — | dt'd,J(a, t'|x, 0)

= J(a, t| x, 0)
= 0,8.,(x,1) . (5.2.181)

The mean exit time, given that exit is through a, is
T(a, x) = [ 13,Prob (T, > 1) dt = | g.(x, 1)dt/gu(x, o). (5.2.182)
0 d

Simply integrating (5.2.181) with respect to ¢, we get

A(x)0:[na(x)T(a, x)] + }B(x)03[m(x)T(a, x)] = —ni(x), (5.2.183)

where we define

n,(x) = (probability of exit through a) = g,(x,0) . (5.2.184)
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The boundary conditions on (5.2.183) are quite straightforward since they follow
from those for the backward Fokker-Planck equation, namely,

n@)T(a, a) = n(b)T(a,b) = 0. (5.2.185)

In the first of these clearly T(a, a) is zero (the time to reach a from a is zero) and in
the second, 7m,(b) is zero (the probability of exiting through a, starting from b, is
zero).

By letting —0 in (5.2.181), we see that J(a,0|x,0) must vanish if a # x. since.
p(a,0]|x,0) = d(x—a). Hence, the right-hand side tends 10 zero and we get

A(x)0,.m,(x) + $B(x)0n,(x) =0, (5.2.186)

the boundary condition this time being

(@) =1

(b)) = 0. (5.2.187)

The solution of (5.2.186) subject to this boundary condition and the condition

(%) + m(x) =1 (5.2.188)

is
7a() = [ [ dy O f dy w(3) (5.2.189)
7s0) = [ dy ) [ dy v() (5.2.190)

with w(x) as defined in (5.2.157).
These formulae find application in the problem of relaxation of a distribution
initially concentrated at an unstable stationary point (Sect.9.1.4).

5.3 Fokker-Planck Equations in Several Dimensions

In many variable situations, Fokker-Planck equations take on an essentially more
complex range of behaviour than is possible in the case of one variable. Boundaries
are no longer simple end points of a line but rather curves or surfaces, and the
nature of the boundary can change from place to place. Stationary solutions even
with reflecting boundaries can correspond to nonzero probability currents and
eigenfunction methods are no longer so simple.
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Nevertheless, the analogies between one and many dimensions are useful, and
this section will follow the same general outline as that on one-variable situations.

5.3.1 Change of Variables

Suppose we have a Fokker-Planck equation in variable x;,

Oup(x, 1) = — 2 0:[ALx)p(x, 1] + 4 200,18, (x)p(x, 1)] (5.3.1)
and we want to know the corresponding equation for the variables

»=fix), (5.3.2)

where f; are certain differentiable independent functions. Let us denote by j(y, )
the probability density for the new variable, which is given by

p(y,t) = p(x, 1)

(x1, Xy . )’ (5.3.3)

oy, y2 -

The simplest way to effect the change of variables is to use Ito’s formula on the
corresponding SDE

dx(t) = A(x)dt + /B(x) dW(t) (5.3.4)

and then recompute the corresponding FPE for j(y, t) from the resulting SDE as
derived in Sect. 4.3.4.

The result is rather complicated. In specific situations, direct implementation
(5.3.3) may be preferable. There is no way of avoiding a rather messy calculation
unless full use of symmetries and simplifications is made.

Example: Cartesian to Polar Coordinates. As an example, one can consider the
transformation to polar coordinates of the Rayleigh process, previously done by
the SDE method in Sect.4.4.5. Thus, the Fokker-Planck equation is

—yd 9 L .(%p O
0p(Es, En 1) = 55 Eup + v 3 Eap + 52 55 + 57 (5.3.5)

and we want to find the FPE for a and ¢ defined by

E, = acosg (5.3.6)
Ez =a Sin¢ .
The Jacobian is
O(E, , E;) _|cosg —a sing
3(a, ) |sing acos ¢
=a. (5.3.7)

] ==
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We use the polar form of the Laplacian to write

02 0% 1 0% 1 8 P
3E} T 3BT @ Za_a("a_a) (5.3.8)

and inverting (5.3.6)

@=VEI+ B ] (5.3.9)
= tan~!(E,/E)) , -
we note
-
3E,_ VEIfE ¢
(5.3.10)

Similarly,

da .
a—E.z = Sin ¢

and

o E
3E, " E? +1—ET§ = cos g/a .
Similarly, (5.3.11)

(,?—gl = — sin d/a .

Hence,

d d
== E = E
aE| lp+aE2 2P

_ o0 0 2) |
=2+ £ aaaE,+a¢ag) + £

_ op_ 10
—2”+"aa— aaa(‘”’)'

op 0a , 9p a_¢)
3adE, " 3¢ 3E,
(5.3.12)

Let us use the symbol p(a, ¢) for the density function in terms of @ and g. The Jaco-

bian formula (5.5.3) tells us that

d(E,, E
pa, ¢) = g(a‘ ¢)’) p(Ey, Ez) = ap(Ey, Ey) - (5.3.13)
Putting together (5.3.5, 8, 12, 13), we get
|+ (28 4 02 (5.3.14)

¥="§[(—ya+z)ﬁJ+7(?W 5]
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which (of course) is the FPE, corresponding to the two SDE’s in Sect.4.4.5, which
were derived by changing variables according to Ito’s formula.

5.3.2 Boundary Conditions

We have already touched on boundary conditions in general in Sect.5.2.1 where
they were considered in terms of probability current. The full range of boundary
conditions for an arbitrary multidimensional Fokker-Planck equation does not
seem to have been specified yet. In this book we shall therefore consider mostly
reflecting barrier boundary conditions at a surface §, namely,

n-J=0 onsSéS, (5.3.15)

where n is the normal to the surface and

T5, 1) = Aix, 0PG5, 1) — 5 5 3 Byx, Dple, 1) (5.3.16)

and absorbing barrier boundary conditions
p(x, 1) =0 forxon §. (5.3.17)

In practice, some part of the surface may be reflecting and another absorbing.
At a surface S on which 4, or B,; age discontinuous, we enforce

nJ,=n-J, on S ’ (5.3.18)
pi(x) =p(x) xonS.
The tangential current component is permitted to be discontinuous.

The boundary conditions on the backward equation have already been derived
in Sect.5.2.4. For completeness, they are

Absorbing Boundary p(x,t|y,t) =0 yes (5.3.19)
Reflecting Boundary > n,B,(y) aiy plx, t|y,t)=0 yeSs. (5.3.20)
Y] 'y

5.3.3 Stationary Solutions: Potential Conditions

A large class of interesting systems is described by Fokker-Planck equations which
permit a stationary distribution for which the probability current vanishes for
all x in R. Assuming this to be the case, by rearranging the definition of J (5.3.16),
we obtain a completely equivalent equation

% jz sz(x) aps(x) = ps(x) [A,(x) — % ;Z)ix, BU(X)] . (532])

ax;
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If the matrix B;,(x) has an inverse for all x, we can rewrite (5.3.21)

aix, log [py(x)] = ; B;'(x) [2Ak(x) - 12 E;a;, Bk,(x)] (5.3.22)
= Z|[A4, B, x]. (5.3.23)

This equation cannot be satisfied for arbitrary B, (x) and A4,(x) since the left-hand
side is explicitly a gradient. Hence, Z, must also be a gradient, and a necessary and
sufficient condition for that is the vanishing of the curl, i.e.,

9z, _ 9z,
otk (5.3.24)

If this condition is satisfied, the stationary solution can be obtained by simple
integration of (5.3.22):

pi(x) = exp {)ji dx'-Z[A, B, x']}. (5.3.25)

The conditions (5.3.24) are known as potential conditions since we derive the quan-
tities Z, from derivatives of log [p,(x)], which, therefore, is often thought of as a
potential —g(x) so that more precisely,

ps(x) = exp [—g(x)] (5.3.26)
and
(x) = —[ dx'-Z[4, B, x']. (5.3.27)

Example: Rayleigh Process in Polar Coordinates. From (5.3.14) we find

—_ 212,
A= [ va+ el a} (5.3.28)
0
& 0
B =[ } (5.3.29)
0 &
from which
95 _v95 0 (5.3.30)
] ax, &t j ax, ¢J
so that
—2yajer + 1
Z—2B'4= [ y"/so + /a} (5.3.31)
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and clearly

0z, 0Z;
o = 5 = 0. (5.3.32)

The stationary solution is then

pa, §) = eXP[(a'I‘)(dyi Zy+da Z,)] (5.3.33)
— ./chp(— yg—‘f + log a) (5.3.34)
= AN aexp (— ygizz) (5.3.35)

5.3.4 Detailed Balance

a) Definition of Detailed Balance

The fact that the stationary solution of certain Fokker-Planck equations corres-
ponds to a vanishing probability current is a particular version of the physical
phenomenon of detailed balance. A Markov process satisfies detailed balance if,
roughly speaking, in the stationary situation each possible transition balances
with the reversed transition. The concept of detailed balance comes from physics,
so let us explain more precisely with a physical example. We consider a gas of
particles with positions r and velqcities v. Then a transition corresponds to a
particle at some time ¢ with position velocity (r, v) having acquired by a later
time ¢ + t position and velocity (', v'). The probability density of this transition
is the joint probability density p(r',V', t + t; r, v, 1).

We may symbolically write this transition as

(ro,t)—(r,v',t+1). (5.3.36)

The reversed transition is not given simply by interchanging primed and unprimed
quantities Rather, it is

F,—v,t)—~(r,—v,t+ 7). (5.3.37)

It corresponds to the time reversed transition and requires the velocities to be re-
versed because the motion from r’ to r is in the opposite direction from that from
rtor'.

The probability density for the reversed transition is thus the joint probability
density

plr,— v, t+1;¢r,—0,t). (5.3.38)

The principle of detailed balance requires the equality of these two joint probabilities
when the system is in a stationary state. Thus, we may write
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ps(r', V', t;r,0,0) = p(r, —v, 751, —V', 0) (5.3.39)

(The principle can be derived under certain conditions from the laws of physics,
see [5.7] and Sect.5.3.6b.)
More explicitly, for a Markov process we can rewrite (5.3.39)

p(r', v, t|r, v, O)p(r, v) = p(r, — v, 7|F, — U, O)p,(t', — V'), (5.3.40)

where the conditional probabilities now apply to the corresponding homogeneous
Makov process (if the process was not Markov, the conditional probabilities would
be for the stationary system only).

In its general form, detailed balance is formulated in terms of arbitrary variables
X, which under timereversal, transform to the reversed variables according to the rule

X; — €%, (5.3.41)
&= +1 (5.3.42)

depending on whether the variable is odd or even under time reversal. In the above,
r is even, v is odd.
Then by detailed balance we require

ps(x, t +1;x",t) =pex’,t + 1;ex,1). (5.3.43)

By ex, we mean (g,X,, &%, -..).
Notice that setting 7 = 0 in (5.3.43) we obtain

3(x — x")p(x') = d(ex — ex')p,(ex) . (5.3.44)
The two delta functions are equal since only sign changes are involved. Hence,
ps(x) = p,(ex) (5.3.45)

is a consequence of the formulation of detailed balance by (5.3.43). Rewriting now
in terms of conditional probabilities, we have

p(x, 7| x’, O)p(x") = p(ex’, 7| ex, O)p(x) . (5.3.46)

b) General Consequences of Detailed Balance
An important consequence of (5.3.45) is that

(x), = edx), (5.3.47)

(hence all odd variables have zero stationary mean), and for the autocorrelation
function

G(7) = <x(1)x"(0)),
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we have
G(7) = e&{x(0)x™(7)),e ,

hence,

G(7) = eGT(7)e (5.3.48)

and setting 7 = 0 and noting that the covariance matrix ¢ satisfies ¢ = o7,

oe = g0 . (5.3.49)

For the spectrum matrix
S@) = 5 | e G(x)
w) =5 ]c¢ ,
we find from (5.3.48) that

S(w) = eST(w)e . (5.3.50)

¢) Situations in Which Detailed Balance must be Generalised
It is possible that there exist several stationary solutions to a Markov process,

and in this situation, a weaker form of detailed balance may hold, namely, instead
of (5.3.43), we have $

pi(x, t + 1;x',t) = pXex’, t + 15 ex, 1) (5.3.51)

where the superscripts 1 and 2 refer to two different stationary solutions. Such a
situation can exist if one of the variables is odd under time reversal, but does not
change with time; for example, in a centrifuge the total angular momentum has this
property. A constant magnetic field acts the same way.

Mostly, one writes the detailed balance conditions in such situations as

pix, t + 7;x', t) = p*Mex', + 7; €x, 1) (5.3.52)

where 4 is a vector of such constant quantities, which change to ¢4 under time re-
versal. According to one point of view, such a situation does not represent detailed
balance; since in a given stationary situation, the transitions do not balance in
detail. It is perhaps better to call the property (5.3.52) time reversal invariance.
In the remainder of our considerations, we shall mean by detailed balance the
situation (5.3.45), since no strong consequences arise from the form (5.3.52).

5.3.5 Consequences of Detailed Balance

The formulation of detailed balance for the Fokker-Planck equation was done
by van Kampen [5.7] and independently by Uhlhorn [5.8], and Graham and Haken
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[5.9]. We will formulate the conditions in a slightly more direct and more general
way. We want necessary and sufficient conditions on the drift and diffusion coeffi-
cients and the jump probabilities for a homogeneous Markov process to have
stationary solutions which satisfy detailed balance. We shall show that necessary
and sufficient conditions are given by

O W(x|x)p(x) = W(ex'|ex)py(x)

(i) mmw&wwmmmn+;£wwmml (53.53)

(iii) e¢,B;(ex) = B(x) .

The specialisation to a FPE is simply done by setting the jump probabilities W(x|x")
equal to zero.

Necessary Conditions. It is simpler to formulate conditions for the differential Chap-
man-Kolmogorov equation than to restrict ourselves to the Fokker-Planck
equation. According to Sect. 3.4 which defines the quantities W(x|x"), 4,(x) and
B,,(x) (all of course being time independent, since we are considering homogeneous
process), we have the trivial result that detailed balance requires, from (5.3.46)

W(x|x")p(x") = W(ex'|ex)p,(x) . (5.3.54)
Consider now the drift coefficient. For simplicity write

x=x+96. (5.3.55)

Then from (5.3.46) we have

[ d6 5,p(ex + ed, At|ex, O)p,(x)

181<K

= [ dé 6,p(x, At|x + 8,0)p,(x + &) (5.3.56)
181<K

(we use K instead of ¢ in the range of integration to avoid confusion with ¢,); divide
by At and take the limit At — 0, and the left-hand side yields

g, A(ex)p(x) + O(K) . (5.3.57)
On the right-hand side we write
p(x + 6 — 6, At}x + 8, 0)p,(x + 8) = p(x — 8, At|x, O)p,(x) (5.3.58)

+ 318 2 [p(x — 8, At|x, O)p(x)] + O)
J j

so that the right-hand side is
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.1 0
lim - [ d& [5,p(x = 8 Atlx, 0p,(x) + 3164, - [p(x — 8, At| 5 0)p,)]| + OK)
0
= —A(x)p,(x) + ; a7}[191,0:)10,;(::)] + 0(K), (5.3.59)

where we have used the fact demonstrated in Sect. 3.4 that terms involving
higher powers of J than 6% are of order K. Letting K — 0, we find

GA(ERP() = —ADPX) + 5 %[B,,(x)p,(xn . (5.3.60)

The condition on B;,(x) is obtained similarly, but in this case no term like the second
on the right of (5.3.60) arises, since the principal term is O(6?). We find

£.,B,(ex) = By(x). (5.3.61)

A third condition is, of course, that p,(x) be a stationary solution of the differential
Chapman-Kolmogorov equation. This is not a trivial condition, and is, in general,
independent of the others.

Sufficient Conditions. We now show that (5.3.53) are sufficient. Assume that these
conditions are satisfied, that p,(x) is a stationary solution of the differential Chap-
man-Kolmogorov equation, and that p(x, ¢|x’, 0) is a solution of the differential
Chapman-Kolmogorov equation. We now consider a quantity

p(x, t|x',0) = p(ex’, t|ex, O)p,(#)/p(x") . (5.3.62)
Clearly
p(x,0]|x,0) = 8(x — x") = p(x,0|x",0). (5.3.63)

We substitute p into the differential Chapman-Kolmogorov equation and show
that because p(x’, t|x,0) obeys the backward differential Chapman-Kolmogorov
equation in the variable x, the quantity p is a solution of the forward differential
Chapman-Kolmogorov equation.

We do this explicitly. The notation is abbreviated for clarity, so that we write

)/ for p(x, t|x’', 0)
ps for  p(x)

p for  p(x)

p(x) for p(x', t|x,0).

(5.3.64)

We proceed term by term.
i) Drift Term:

—S 2 (40) = —5 5% (AeOplp) (5.3.65)
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= 5 [ tplplen) + A, i o) i
T 10X, s ‘ox, s

ii) Diffusion Term:

Z ax ax Up) l 2 [ax ax (Bl/ps)]’(ex)

iJ
@ ,
2 5 (Bup) o pe8) + Bups g p(e) | (53.66)
iii) Jump Term:

[deW(x|2)p(z, tx',0) — W(z|x)p(x, t]|x’, 0)]
= [ da[W(x|2)p(2)p(ex’, t| ez, 0) — W(z|x)p(x)p(ex’, t|ex,0)]/p; . (5.3.67)

We now use the fact that p,(x) is a solution of the stationary differential Chapman-
Kolmogorov equation to write

2| p) + 5 £ 52 B,p)| — [ dz Waalp (o)
= —[ dz W(x|2)p,(z) (5.3.68)
and using the detailed balance condition (5.3.53(i)) for W
= —[ dz W(ez|ex)p(x). (5.3.69)
Now substitute

y=¢éx (5.3.70)

and all up all three contributions, taking care of (5.3.68, 69):
~ [~ Seterin) | p0)| + Soe, - B erni )| 3 r0)|

p(y)] (5.3.71)

0
+ 7 g &, B;(ey)p(y) [m

+ [ dz[W(ey | 2)p(2)p (¥, t|£2,0) — W(ey|2)p(2)p(y', t]y, 0)], [p(¥").
We now substitute the detailed balance conditions (5.3.53).
=[S 40) 0 19,0) + 5 3 B9) 5= P 119, 0)
- 7 iy ay‘p .V, .V, 2 & ij .V ay‘ayjp y’ y,

+ [ de[W(z|y)p(¥,t]2,0) — W(z|y)p(y', t]y, 0) p,(»)IPs(¥') . (5.3.72)
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The term in the large curly brackets is now recognisable as the backward differential
Chapman-Kolmogorov operator [Sect.3.6, (3.6.4)]. Note that the process is homo-
geneous, so that

p(y',t|y,0) = p(y,0|y, —1t).

We see that

(5372 = 2 (o0, 11, Op.Ipy ) = 2 px, 112/, 0) (53.73)

which means that p(x, ¢|x’, 0), defined in (5.3.62), satisfies the forward differential
Chapman-Kolmogorov equation. Since the initial condition of p(x, ¢|x’, 0) and
p(x, t|x’,0) at 1 = 0 are the same (5.3.63) and the solutions are unique, we have
shown that provided the detailed balance conditions (5.3.53) are satisfied, detailed
balance is satisfied. Hence, sufficiency is shown.

Comments
i) Even variables only: the conditions are considerably simpler if all ¢, are 4-1. In
this case, the conditions reduce to

We | 2)pux') = W' | )p(e) (5.3.74)
AP = 5 3 5 (B2 (53.75)
B, (x) = By(x), . (5.3.76)

the last of which is trivial. The condition (5.3.75) is exactly the same as the potential
condition (5.3.21) which expresses the vanishing of J, the probability current in the
stationary state.

The conditions (5.3.74, 75) taken together imply that p (x) satisfies the stationary
differential Chapman-Kolmogorov equation, which is not the case for the general
conditions (5.3.53).

i1) Fokker-Planck equations: van Kampen, [5.7], and Graham and Haken [5.9] in-
troduced the concept of reversible and irreversible drift parts. The irreversible
drift is

D (x) = } [A,(x) + &A(ex)] (5.3.77)
and the reversible drift
I(x) = } [A(x) — & A (ex]. (5.3.78)

Using again the potential defined by

Ps(x) = exp [—¢(x)], (5.3.79)



we see that in the case of a Fokker-Planck equation, we can write the conditions for
detailed balance as

&, B, (ex) = By(x) (5.3.80)
D(x) = 5 S [B(6)] = =5 3 By() 52 (5381)
%[5 10 — 10 %42 — o (5382)

where the last equation is simply the stationary FPE for p,(x), after substituting
(3.3.53(i)). As was the case for the potential conditions, it can be seen that (5.3.81)
gives an equation for dg/dx; which can only be satisfied provided certain conditions
on D(x) and B,,(x) are satisfied. If B,,(x) has an inverse, these take the form

3_;2; = %“ij ) (5.3.83)
where

2, = 3 B () |200) — 3 3 Bu()| (53,84
and we have

pix) = exp[—g(x)] = exp ([ dx' 2) (5.3.85)

Thus, as in the case of a vanishing probability current, p,(x) can be determined
explicitly as an integral.

iii) Connection between backward and forward operators of differential Chapman-
Kolmogorov equations is provided by the detailed balance. The proof of sufficient
conditions amounts to showing that if f(x, t) is a solution of the forward differential
Chapman-Kolmogorov equation, then

f(x, 1) = flex, — 1)/p(x) (5.3.86)

is a solution of the backward differential Chapman-Kolmogorov equation. This
relationship will be used in Sect.5.3.7 for the construction of eigenfunctions.

5.3.6 Examples of Detailed Balance in Fokker-Planck Equations

a) Kramers’ Equation for Brownian Motion [5.10]

We take the motion of a particle in a fluctuating environment. The motion is in one
dimension and the state of the particle is described by its position x and velocity v.
This gives the differential equations
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Z—f = (5.3.87)
and
m%’ — _V'(x) — v + /ZBRT E(1) (5.3.88)

which are essentially Langevin’s equations (1.2.14) in which for brevity, we write
6nna = f

and V(x) is a potential whose gradient V’(x) gives rise to a force on the particle.
By making the assumption that the physical fluctuating force &(¢) is to be interpreted
as

E(t)dt = dW(t) (5.3.89)
as explained in Sect.4.1, we obtain SDE’s

dx = v dt (5.3.90)

m dv = —[V'(x) + pv]dt + /2F kT dW(t) (5.3.91)
for which the corresponding FPE i

BkTd%p
m?* ov*’

% _ (%(vp) + %a% {(V'(x) + Bvlp} + (5.3.92)

at

The equation can be slightly simplified by introducing new scaled variables

= x/mkT (5.3.93)
u = v/mJkT (5.3.94)
U(y) = V(x)[kT (5.3.95)
y = Blm (5.3.96)

so that the FPE takes the form

op_ _ 3 9 9 ?B)
57 = — 5 D) + 5 (VO + v w0 + 5 (5.397)
which we shall call Kramers’ equation.

Here, y (the position) is an even variable and u (the velocity) an odd variable, as
explained in Sect.5.3.4. The drift and diffusion can be written
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u
Ay, u) = [_ Uiy — yu], (5.3.98)
B(y, u) = [0 0 } (5.3.99)
0 2y
and
e[y} - {y } (5.3.100)
u —Uu

We can check the conditions one by one.
The condition (5.3.53(iii)) is trivially satisfied. The condition (5.3.53(ii)) is
somewhat degenerate, since B is not invertible. It can be written

0
eA(y, — wp(y, u) = —A(y, Wp(y, u) + ap, (5.3.101)
2y ™
or, more fully
—u —u 0
v) - | v+ || 2 % - G109
The first line is an identity and the second states
—up(y, u) = % , (5.3.103)
ie.,
Py, u) = exp (—4u")f () (5.3.104)

which means that if p,(y; u) is written in the form (5.3.104), then the detailed
balance conditions are satisfied. One must now check whether (5.3.104) indeed gives
a stationary solution of Kramers’ equation (5.3.97) by substitution. The final brac-
ket vanishes, leaving

0= —ug——g — U'O)uf (5.3.105)

which means

J) = A exp [-U)] (5.3.106)

and
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ps(y, u) = A exp [-U(y) — $u?]. (5.3.107)

In terms of the original (x, v) variables,

V(x) mvz]

Di(x, v) = A exp [— T kT (5.3.108)

which is the familiar Boltzmann distribution of statistical mechanics. Notice that
the denominators kT arise from the assumed coefficient /28kT of the fluctuating
force in (5.3.88). Thus, we take the macroscopic equations and add a fluctuating
force, whose magnitude is fixed by the requirement that the solution be the Boltz-
mann distribution corresponding to the temperature T.

But we have also achieved exactly the right distribution function. This means
that the assumption that Brownian motion is described by a Markov process of the
form (5.3.87, 88) must have considerable validity.

b) Deterministic Motion
Here we have B,,(x) and W(x|x") equal to zero, so the detailed balance conditions
are simply

gA(ex) = —A/(x). (5.3.109)
Since we are now dealing with a Liouville equation (Sect.3.5.3), the motion of a

point whose coordinates are x is described by the ordinary differential equation
¥

‘%x(t) = A[x(1)] . . (5.3.110)
Suppose a solution of (5.3.110) which passes through the point y at # = 0 is

qlz, y] (5.3.111)
which therefore satisfies

q0,y]=y. (5.3.112)
Then the relation (5.3.109) implies that the reversed solution

eq(—1, ey) (5.3.113)
is also a solution of (5.3.110), and since

eq(0,ey) = eey =y, (5.3.114)
i.e., the initial conditions are the same, these solutions must be identical, i.e.,

eq(—t, ey) =q(1, ). (5.3.115)

Now the joint probability in the stationary state can be written as
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po(x, t;x', 1) = [ dy p(x,t; x', t'; y,0)
= [ dy 8[x — q(t, )I8[x’ — q(¢', »)]p,(¥) (5.3.116)

and
pex', —t';ex, — 1) = [ dy 8[ex — q(—1, y)3[ex’ — q(—1', »)]p(y) . (5.3.117)

Change the variables from y to ey and note that p,(y) = p,(ey), and dey = dy, so
that

(5.3.117) = J‘ dy 8[x — eq(—t, ey)18[x’ — eq(—1’, ey)lp.(y) (5.3.118)

and using (5.3.115),

= [ dy 8[x — q(1, p)IB[x' — q(t', »)IpL(¥) (5.3.119)
= px,t; x',t"). (5.3.120)

Using the stationarity property, that p, depends only on the time difference, we
see that detailed balance is satisfied.

This direct proof is, of course, unnecessary since the original general proof is
valid for this deterministic system. Furthermore, any system of deterministic first-
order differential equations can be transformed into a Liouville equation, so this
direct proof is in general unnecessary and it is included here merely as a matter of
interest.

However, it is important to give a brief summary of the philosophy behind
this demonstration of detailed balance. In physical systems, which are where de-
tailed balance is important, we often have an unbelievably large number of variables,
of the order of 10?° at least. These variables (say, momentum and velocity of the
particles in a gas) are those which occur in the distribution function which obeys a
Liouville equation for they follow deterministic equations of motion, like Newton’s
laws of motion.

It can be shown directly that, for appropriate forms of interaction, Newton’s
laws obey the principle of microscopic reversibility which means that they can be put
in the form (5.3.110), where A(x) obeys the reversibility condition (5.3.109).

The macroscopically observable quantities in such a system are functions of
these variables (for example, pressure, temperature, density of particles) and, by
appropriate changes of variable, can be represented by the first few components of
the vector x.

Thus, we assume x can be written

x = (a, £) (5.3.121)

where the vector a represents the macroscopically observable quantities and £ is all
the others. Then, in practice, we are interested in

play, t; @t a5, 155 ...)
= [[...[d&,dE;...p(x,, t; X2, t25 X3, 135 ...) . (5.3.122)
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From the microscopic reversibility, it follows from our reasoning above that p, and
thus also p, both obey the detailed balance conditions but, of course, p does not
obey a Liouville equation. If it turns out or can be proven that p obeys, to some degree
approximation, a Markov equation of motion, then we must preserve the detailed
balance property, which takes the same form for p as for p. In this sense, the condi-
tion (5.3.43) for detailed balance may be said to be derived from microscopic re-
versibility of the equations of motion.

¢) Ornstein-Uhlenbeck Process: Onsager Relations in Linear Systems
Most systems in which detailed balance is of interest can be approximated by an
Ornstein-Uhlenbeck process, i.e., this means we assume

Afx) = Zj Ayx; (5.3.123)

B,(x) = B,,. (5.3.124)

The detailed balance conditions are not trivial, however. Namely,

bij
2 (egdy + Ay)x, = 2By ix. log p.(x) (5.3.125)
7 7 7

and
&g B, = By, . K (5.3.126)

Equation (5.3.125) has the qualitative implication that p,(x)-s a Gaussian since
derivative of log p,(x) is linear in x. Furthermore, since the left-hand side contains
no constant term, this Gaussian must have zero mean, hence, we can write

Pi(x) = A exp (— } xTo7'x) . (5.3.127)

One can now substitute (5.3.127) in the stationary Fokker-Planck equation and re-
arrange to obtain

—2 Ay — + 2 Byoyt + kZ(Z oty + % ZI: O Buoi)xx; = 0 (5.3.128)
i L] W N

(we have used the symmetry of the matrix ¢). The quadratic term vanishes if
the symmetric part of its coefficient is zero. This condition may be written in
matrix form as

07'4A+ A"¢"' = —¢7'Bs™! (5.3.129)
or
Ao + cAT = —B. (5.3.130)

The constant term also vanishes if (5.3.129) is satisfied. Equation (5.3.130) is, of
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course, exactly that derived by SDE techniques in Sect. 4.4.6 (4.4.51) with the
substitutions

A——4 (5.3.131)
BB B.

We can now write the detailed balance conditions in their most elegant form. We
define the matrix ¢ by

e = diag (¢, &, €3, -..) (5.3.132)
and clearly

e2=1. (5.3.133)
Then the conditions (5.3.125, 126) become in matrix notation

ede + A = —Bo™! (5.3.134)

eBe = B. (5.3.135)

The potential condition (5.3.83) is simply equivalent to the symmetry of a.
As noted in Sect.5.3.4 (5.3.49), detailed balance requires

€0 = g¢. (5.3.136)
Bearing this in mind, we take (5.3.130)
Ao + 6AT = —B

and from (5.3.134)

edes + Ao = —B (5.3.137)
which yield
edec = gAT (5.3.138)

and with (5.3.136)
&(Ao) = (Ao)Te. (5.3.139)

These are the celebrated Onsager relations; Onsager, [5.11]; Casimir,[5.12]. The
derivation closely follows van Kampen’s [5.6] work.

The interpretation can be made simpler by introducing the phenomenological
forces defined as the gradient-of the potential ¢ = log[p,(x)]:

F(x) = —Vg(x) = o7 'x (5.3.140)
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(in physics, ¢/kT is the entropy of the system). Because of the linear form of the
A(x) [(5.3.123)], the exact equations of motion for {x) are

3‘;’ (x> = ACx) = AaF((xD). (5.3.141)

Thus, if the fluxes d/dt{x) are related linearly to the forces F({x)) by a matrix L
defined by

L= Ao, (5.3.142)

then (5.3.139) says

ele= LT (5.3.143)
or
L,=1L, (&, and ¢; of tl'.le same s.ign) (5.3.144)
L;,=—L, (¢, and ¢, of different sign) .

Notice also that

eBe = B
and ¥ (5.3.145)
80 =0 -
imply that B,, and o, vanish if ¢, and ¢; have opposite signs.
In the special case that all the ¢, have the same sign, we find that
L — [T (5.3.146)

and noting that, since ¢ is symmetric and positive definite it has a real square root
o'/?, we find that

A =o12405"2 (5.3.147)

is symmetric, so that A4 is similar to a symmetric matrix. Hence, all the eigenvalues
of A are real.

d) Significance of the Onsager Relations: Fluctuation Dissipation Theorem
The Onsager relations are for a set of macroscopically observable quantities and thus
provide an easily observed consequence of detailed balance, which is itself a conse-
quence of the reversibility of microscopic equations of motion, as outlined in (b)
above. However, to check the validity in a given situation requires a knowledge of
the covariance matrix o.

Fortunately, in such situations, statistical mechanics gives us the form of the
stationary distribution, provided this is thermodynamic equilibrium in which de-
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tailed balance is always satisfied. The principle is similar to that used by Langevin
(Sect.1.2.2). We shall illustrate with an example; the derivation of Nyquist’s
formula

We assume an electric circuit as in Fig. 5.4 in which there is assumed to be a
fluctuating voltage arising from the system having a nonzero temperature, and a
fluctuating charge, which arises because the system is attached to a large neutral
charge reservoir, e.g., an ionic solution. The electrical equations arise from con-
servation of an electric charge g and Kirchoff’s voltage law. The charge equation
takes the form

dqg .
d—f =i—yq + Aq(t) (5.3.148)

in which we equate the rate of gain of charge on the capacitor to the current i, less a
leakage term yq into the reservoir, plus a fluctuating term Ag(t), which arises from
the reservoir, and whose magnitude will be shortly calculated.

HO! C

‘ Fig. 5.4. Electric circuit used in the derivation of
Nyquist’s formula

Kirchoff’s voltage law is obtained by adding up all the voltages around the cir-
cuit, including a possible fluctuating voltage AV(t):

a—[-L-r+avo). (5.3.149)

We now assume that Ag(t) and AV(z) are white noise. We can write in the most
general case,

Aq(t) = b, &i(1) + b12a(2) (5.3.150)

& V(1) = bui(t) + buolt) (5:3.151)

in which &,(?) and &,(¢) are uncorrelated Langevin sources, i.e.,
&i(1)dt = dW (1) (5.3.152)
&(1)dt = dWy(t) , (5.3.153)

where W,(t) and W(t) are independent Wiener processes.
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Thus, here
y —1
A=—|1 R | (5.3.154)
LC L

The total energy in the system is

L.

E’—=—2-l

2 +%qz. (5.3.155)

From statistical mechanics, we know that p,(q, i) is given by the Boltzmann Distri-
bution at temperature T, i.e.,

_ L ¢
— W exp (— T3 CkT) : (5.3.156)

where k is the Boltzmann constant, so that the covariance matrix is

kTC 0
o= [ } (5.3.157)
0 kT/L

The Onsager symmetry can now be checked:

KTC —KT/L ¥
o _ [ . ) (5.3.158)

kT/L RKT/L?

For this system g, the total charge is even under time inversion and i, the current, is
odd.Thus,

e =diag (1, — 1) (5.3.159)
and it is clear that
(40); = — (4g)y (5.3.160)

is the only consequence of the symmetry and is satisfied by (5.3.158).
Here, also,

B = — (o + AT 2kT[”C 0 ] 5.3.161
= — (40 ag = 3.
0 R/L? ( )
so that
b =1b,=0 (5.3.162)
by = V2kTyC (5.3.163)

by, = /2kTR/L



5.3 Fokker-Planck Equations in Several Dimensions 165

and we see that B,, = B,; = 0, as required by physical intuition, which suggests
that the two sources of fluctuations arise from different causes and should be
independent.

These results are fluctuation dissipation results. The magnitudes of the fluctu-
ations b,; are determined by the dissipative terms y and R. In fact, the result (5.3.163)
is precisely Nyquist’s theorem, which we discussed in Sect. 1.4.4. The noise voltage
in the circuit is given by

AV(t) = /2kTR (1) (5.3.164)
so that
CAV(t + DAV(1)Y = 2kTR(7) (5.3.165)

which is Nyquists’ theorem in the form quoted in (1.4.49).
The terms y and R are called dissipative because they give rise to energy dis-
sipation; in fact, deterministically (i.e. setting noise equal to 0),

dE

dE _ .p W’
== —itR - (5.3.166)

which explicitly exhibits the dissipation.

5.3.7 Eigenfunction Methods in Many Variables—Homogeneous Processes
Here we shall proceed similarly to Sect.5.2.5. We assume the existence of a complete

set of eigenfunctions P,(x) of the forward Fokker-Planck and a set Q,(x) of the
backward Fokker-Planck equation. Thus,

—2. [ Ax)Py(x)] + 2, 0,0,[B(x)Py(x)] = —APy(x) (5.3.167)

22 A(x)0,Qx(x) + } 35 Biy(x)0,0,0:(x) = —A'Qu(x) . (5.3.168)

Whether Q,.(x) and P,(x) satisfy absorbing or reflecting boundary conditions, one
can show, in a manner very similar to that used in Sect.5.2.4, that

—(2 — ) [ dx Py(x)Qs(x) =0 (5.3.169)

so that the P,(x) and Q,/(x) form a bi-orthogonal set. However, the functional
relationship between the P, and the Q; only exists if detailed balance withallg; = 1
is valid. We assume

[ dx Py(x)Qx(x) = 6,4, (5.3.170)

if the spectrum of eigenvalues A is discrete. [The Kronecker J,,, is to be replaced
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by 8(4 — A,) when the spectrum is continuous, except where we have reflecting
boundary conditions, and A = 0 is stationary. The normalisation of p,(x) then gives

[ dx Py(x)Qy(x) = [ dx Py(x) = 1 (5.3.171)

so that there is also a discrete point with zero eigenvalue in the spectrum then.]

For, if detailed balance is valid, we have already noted in Sect.5.3.5 (iii) that
p(ex,—t)/p;(x) is a solution of the backward Fokker-Planck equation so that,
from the uniqueness of solutions, we can say

Or(x) = m Pr(e x)/ps(x). (5.3.172)

Here, 7, = £+ 1 but is otherwise undetermined. For, if A = A’, we can then write
(5.3.170) in the form

Pi(x) Pr(e %) _

=%

(5.3.173)

We cannot determine 7, a priori, but by suitable normalisation it may be chosen
4+ 1. If, for example, all ¢, are — 1 and P,(x)is an odd function of x, it is clear that 7,
must be —1.

i) Even Variables Only: Negativity of Eigenvalues. If all the ¢, are equal to one,
then we can write ¥

0x(x) = Px(x)/p(x) . (5.3.174)

and #; can always be set equal to one.

Hence, the expansions in eigenfunctions will be much the same as for the one-
variable case.

The completeness of the eigenfunctions is a matter for proof in each individual
case. If all the ¢, are equal to one, then we can show that the Fokker-Planck oper-
ator is self adjoint and negative semi-definite in a certain Hilbert space.

To be more precise, let us write the forward Fokker-Planck operator as

Z(x) = —310,A(x) + 4 Z,: 0.0,B,,(x) (5.3.175)

and the backward Fokker-Planck operator as

LHx) = 3, Adx)0, + } g B.(x)0.0, . (5.3.176)

Then the fact that, if all ¢, = 1, we can transform a solution of the forward FPE
to a solution of the backward FPE by dividing by p,(x) arises from the fact that for
any f(x),

Z(@[f(x)p(x)] = p(x) L*(x)[f(x)] . (5.3.177)
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Define a Hilbert space of functions f(x), g(x) ... by the scalar product

x| (5.3.178)
Then from (5.3.177),
f(x) g(x)
(f, Zg) = ,! dxps(x) Y(x)[ps(x)Ps( )] (5.3.179)
_ * g(x)
j dx f(x) & (x)[ e )] (5.3.180)

and integrating by parts, discarding surface terms by use of either reflecting or
absorbing boundary conditions

I dx ((x )) ZE)]. (5.3.181)

Thus, in this Hilbert space,

f, Lo = (g Zf).- (5.3.182)

This condition is sufficient to ensure that the eigenvalues of &(x) are real. To
prove negative semi-definiteness, notice that for even variables only, [see(5.3.75)]

Ax) = ; 9,[Bif(x)p(x)]/2p,(x) (5.3.183)

so that for any p(x),

Fp(x) = 50, |- UELLEND | 43,15, pe)

=5 S a(By@P=)[p()lp X))} (5.3.184)
Hence,
(p, Zp) = 5 [ dx p(x)/p.(x) 32 3, (B (2)p(x)0,[p(x)lp.(x)])

and integrating by parts (discarding surface terms),

(p, Zp) = — [ dx B,(x)p,(x)3,[p(x)/p,(x)13,[p(x)/ps(x)] (5.3.185)
<0

since B,,(x) is positive semi-definite.
Hence, we conclude for any eigenfunction P,(x) that A is real, and

1>0 (5.3.186)
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(remember that —4 is the eigenvalue).

ii) A Variational Principle. Combined with this property is a variational principle.
For, suppose we choose any real function f(x) and expand it in eigenfunctions

flx) = ; a;,Py(x) . (5.3.187)

Further, let us fix (f, /) = [ dx f(x)*/p,(x) = 1.
Then,

~(, Z = 3 4a}

and (5.3.188)
() =2 et

Clearly — (f, &Zf) has its minimum of zero only if only the term A = 0 exists, i.e.,

a, #+ 0
a,=0 for A#0.

(5.3.189)

Now choose f(x) orthogonal to Py(x) so @, = 0, and we see that the minimum of
(f, Zf) occurs when -

a;.l=l

and (5.3.190)

a; =0 for all other A,

where 4, is the next smallest eigenvalue. This means that P, (x) is obtained by
minimising —(p, Zp) [which can be put in the form of (5.3.185)], subject to the
condition that

E””;)): 10 (5.3.191)
D, Iy) = .

This method can yield a numerical way of estimating eigenfunctions in terms of
trial solutions and is useful particularly in bistability situations. It is, however, lim-
ited to situations in which detailed balance is valid.

iii) Conditional Probability. Assuming completeness, we find that the conditional
probability can be written

p(x, t|x,, 0) = ;‘. Py(x)Qa(xo)e . (5.3.192)

iv) Autocorrelation Matrix. If detailed balance is valid, for the stationary auto-
correlation matrix [using (5.3.172)] we have
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G(t) = {x(£)xT0)) = > e~ i dx xP;(x)] [}[ dx xP,(x)]"e (5.3.193)

which explicitly satisfies the condition
G(t) = eG"(t)e (5.3.199)

derived in Sect. 5.3.4b.
v) Spectrum Matrix. The spectrum matrix is
l T —iar
S(w) =§7—t_jme lotG(t)dt
(5.3.195)

— _l_ ¢ —imt T iwt T,
=5 [b[e G(t)dt + Je G (t)dtl .
If we define, for convenience,

= Idx IP;(I) S (53196)

then

UUTe +

A—

_1 T
S@) = 5- 2[,1 i weU,UA]. (5.3.197)

If any of the A are complex, from the reality of Z(x) we find that the eigenfunction
belonging to A* is [Py(x)]*, 7, = 5§ and [U,;]* = U,*. The spectrum is then ob-
tained by adding the complex conjugate of those terms involving complex eigen-
values to (5.3.197).

In the case where 8 = | and hence #; = 1, the spectrum matrix has the simpler
form

AUAUT

S(w) = ; (5.3.198)

1
s

which is explicitly a positive definite matrix. The spectrum of a single variable
g made up as a linear combination of the x by a formula such as

gq=m-x (5.3.199)
is given by

1 A(m-U,)?

Si) = mS@m = — S5 (5.3.200)

and is a strictly decreasing function of w.
In the case where € =+ 1, the positivity of the spectrum is no longer obvious,
though general considerations such as the result (3.7.19) show that it must be.
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An important difference arises because the A now need not all be real, and this
means that denominators of the form

23 + (0 — A1) (5.3.201)

can occur, giving rise to peaks in the spectrum away from w = 0.

5.4 First Exit Time from a Region (Homogeneous Processes)

We wish to treat here the multidimensional analogue of the first passage time
problem in one dimension, treated in Sect.5.2.7. As in that section, we will restrict
ourselves to homogeneous processes.

The analogous problem here is to compute the earliest time at which a particle,
initially inside a region R with boundary S, leaves that region.

As in the one-dimensional case, we consider the problem of solving the back-
ward Fokker-Planck equation with an absorbing boundary condition on S, namely,

p(x', t|x,0) =0 (xe9). (5.4.1)
The probability that the particle, initially at x, is somewhere within R after a time ¢
is

¥
G(x, 1) = [ dx'p(x’, t|x, 0) (5.4.2)
R
and if T is the time at which the particle leaves R, then

Prob(T > t) = G(x, 1) . (5.4.3)

Since the process is homogeneous, we find that G(x, t) obeys the backward Fokker-
Planck equation

8.G(x, 1) = 32 A()G(x, 1) + 2 3 By(x)0R,G(x, 1) . (5.4.4)

The initial conditions on (5.4.4) will arise from:

i) p(x',0|x,0) = 8(x — x') (5.4.5)
so that
G(x,0)=1 xR (5.4.6)

=0 elsewhere;
ii) the boundary condition (5.4.1) requires

G(x,t)=0 xeS. (5.4.7)
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As in Sect. 5.2.7, we find that these imply that the mean exit time from R starting at
x, for which we shall use the symbol T(x), satisfies

25 Ax)0,T(x) + 2 ; B, (x)0,0,T(x) = —1 (5.4.8)
with the boundary condition
T(x)=0 xe S (5.4.9)

and the nth moments

Ty(x) =<(T") = .:[ot"“G(x, t)dt (5.4.10)
satisfy

—nT, (x)= ‘2 A(x)d,T,(x) + %‘, B, (x)0,0,T,(x) (5.4.11)
with the boundary conditions

T(x)=0 xeSsS. (5.4.12)
Inclusion of Reflecting Regions. It is possible to consider that S, the boundary of
R, is divided into two regions S, and S, such that the particle is reflected when

it meets S; and is absorbed when it meets S,. The boundary conditions on G(x, t)
are then, from those derived in Sect. 5.2.4,

_5; nB,(x)9,G(x,1) =0 (x €S, (5.4.13)
Gx,1)=0 (x€S,) (5.4.14)

and hence,
z‘; nB,(x)0,T(x) =0 (x €S,) (5.4.15)
T(x)=0 (x€85,). (5.4.16)

5.4.1 Solutions of Mean Exit Time Problems

The basic partial differential equation for the mean first passage time is only simple
to solve in one dimension or in situations where there is a particular symmetry
available. Asymptotic approximations can provide very powerful results, but these
will be dealt with in Chap.9. We will illustrate some methods here with some
examples.
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a) Ornstein-Uhlenbeck Process in Two Dimensions (Rotationally Symmetric)
we suppose that a particle moves according to

dx = —kx dt + /D dW,(t)

(5.4.17)
dy = —ky dt + /D dW,(t)
and want to know the mean exit time from the region
x +y* < a? (5.4.18)

given the initial position is at x,, y,.
This is easily reduced to the one-dimensional problem for the variable

r=/x*+y* (5.4.19)
by changing variables as in Sect.4.4.5, namely,
dr = (—kr + } D[r)dt + ~/D dW(1) (5.4.20)

and we want to know the mean exit time from the region (0, @). This can be solved
by using (5.2.165) with the replacements

U(x) — 3kr* — iD log r

D —14D

Xy —a ¥ (5.4.21)
a —JxXxXFp=r, 3

—oo —0.

Thus, T(r, — a)
_ % f y=1 explky?/Dldy | z exp(—kz*/Ddz . (5.4.22)
ro ]

The problem is thus essentially one dimensional. This does not often happen.

b) Application of Eigenfunctions
Suppose we use the eigenfunctions Q;(x) and P;(x) to expand the mean first passage
time as

T(x) = 3 ,0:(x). (54.23)

We suppose that the P,(x) and Q,(x) satisfy the boundary conditions required
for the particular exit problem being studied, so that T(x) as written in (5.4.23)
satisfies the appropriate boundary conditions.

We then expand

—1 = Z), I;.Qx(x) , (5.4.24)

where
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I = — [dx Pyx). (5.4.25)

Inserting (5.4.23) into (5.4.8) yields

My=—1, (5.4.26)
so that
1
T(x)= Z;, ~ Qi) ‘{ dx’ Py (x'). (5.4.27)

The success of the method depends on the knowledge of the eigenvalues satisfying
the correct boundary conditions on S and normalised on R.

¢) Asymptotic Result

If the first eigenvalue A, is very much less than all other eigenvalues, the series
may be approximated by its first term. This will mean that the eigenfunction Q,
will be very close to a solution of

25 Alx)0,f(x) + % 2. Bi(x)9:0,f(x) = 0 (5.4.28)
i i)
since 4, is very small. Hence,

0\(x) ~ K (5.4.29)

where K is a constant. Taking account of the bi-orthonormality of P, and Q,, we see

I = [dx P,(x)Q\(x) ~ K [ dx P\(x) (5.4.30)
so that
T(x) ~ 1/4, . (5.4.31)

The reasoning given here is rather crude. It can be refined by the asymptotic meth-
ods of Chap.9.

d) Application of the Eigenfunction Method
Two-dimensional Brownian motion: the particle moves in the x y plane within a
square whose corners are (0, 0), (0, 1), (1, 0), (1, 1). The sides of this square are
absorbing barriers. T(x, y) obeys
D (0*T = 0*T
7(5;2 a_yZ) - 1. (5.4.32)

The eigenfunctions satisfying the boundary condition T = 0 on the edges of the
square are

P, .(x, y) = sin(nnx) sin(mnx) (5.4.33)
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with
0, (X, 3) = 4 sin(nnx) sin(mnx)
and n, m positive and integral. The eigenvalues are
TLD
2

Aom = —5 (n* + m?).

The coefficient

[dxdy P, .(x,y) =0  (either n or m even)
R

= —4—2 (m and n both odd) .

"~ mnn
Hence,
1 32
T0) =D 25 (o + )

odd

5.4.2 Distribution of Exit Points 3

sin(nnx) sin(mmy) .

(5.4.34)

(5 4.35)

(5.4.36)

(5.4.37)

This problem is the multidimensional analogue of that .treated in Sect.5.2.8.
Namely, what is the probability of exiting through an element dS(a) at a of the

boundary S of the region R. We assume absorption on all S.
The probability that the particle exits through dS () after time ¢ is

g(a, x,1)|dS(a)| = —Oj? dt'J(a,t'|x,0)-dS(a) .

dS(a)

(5.4.38)

Fig. 5.5. Region and surface considered in Sect. 5.4.2
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Similar reasoning to that in Sect.5.2.8 shows that g(a, x, t) obeys the backward
Fokker-Planck equation

2 A(x)0.g(a, x,t) + } ‘? B, (x)0,0,g(a, x, 1) = 0,g(a, x, 1) . (5.4.39)
The boundary conditions follow by definition. Initially we have

gla, x,0)=0 for x #a,x R (5.4.40)
and at all times

gla,x,t)=0 qfor x+axeS. (5.4.41)
If x = a, then exit through dS(a) is certain, hence,

gla,a, t)dS(a) =1 for all ¢ (5.4.42)
or effectively

gla, x,t) = 6(a — x) xec 8, forally, (5.4.43)
where 8,(a — x) is an appropriate surface delta function such that

[1dS(a)|8(a — x)=1. (5.4.44)
The probability of ultimate exit through dS(a) is

n(a, x)|dS(a)| = g(a, x,0) | dS(a) | . (5.4.45)

The mean exit time given that exit occurred at a is
T(a, x) = [ dt g(a, x, t)/n(a, x) (5.4.46)
0

and in the same way as in Sect.5.2.8, we show that this satisfies

2. A(x)3{n(a, )T(a, x)] + § 3. B,(x)d.,[n(a, x)T(a, x)] = —n(a, x)

(5.4.47)

and the boundary conditions is
n(a, x)T(a, x) = 0, xeS. (5.4.48)

Further, by letting t — oo in the corresponding Fokker-Planck equation for
g(a, x, t), we obtain the equation for n(a, x):
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> Ax)d[n(a, x)] + % g Bl.l(x)aiaj[n(a9 x)]=0.

The boundary condition for (5.4.49) is
n(a,x) =0 a + x, xeS
and
J'|dS(a)|7t(a, x)=1.

Thus, we can summarise this as
n(a, x) = &,(a — x) xesS,

where 8,(a — x) is the surface delta function for the boundary S.

(5.4.49)

(5.4.50)

(5.4.51)

(5.4.52)



6. Approximation Methods for Diffusion Processes

The methods described in the previous two chapters have concentrated on exact
results, and of course the results available are limited in their usefulness. Approxi-
mation methods are the essence of most applications, where some way of reducing a
problem to an exactly soluble one is always sought. It could even be said that most
work on applicationsis concerned with the development of various approximations.

There are two major approximation methods of great significance. The first is
the small noise expansion theory which gives solutions linearised about a deter-
ministic equation. Since noise is often small, this is a method of wide practical
application, the equations are reduced into a sequence of time-dependent Ornstein-
Uhlenbeck processes. Mostly the first order is used.

Another large class of methods is given by adiabatic elimination, in which differ-
ent time scales are identified and fast variables are eliminated completely. This
forms the basis of the second half of the chapter.

6.1 Small Noise Perturbation Theories

In many physical and chemical problems, the stochastic element in a dynamical
system arises from thermal fluctuations, which are always very small. Unless one
measures very carefully, it is difficult to detect the existence of fluctuations. In such a
case, the time development of the system will be almost deterministic and the
fluctuations will be a small perturbation.

With this in mind, we consider a simple linear example which is exactly soluble:
a one-variable Ornstein-Uhlenbeck process described by the stochastic differential
equation:

dx = — kx dt + edW(t) (6.1.1)
for which the Fokker-Planck equation is
0,p = 0,(kx p) + }e%d2p. (6.1.2)

The solutions of these have been previously investigated in Sects. 3.8.4, 4.4.4. Here
¢ is a small parameter which is zero in the deterministic limit. However, the limit
¢ — 0 is essentially different in the two cases.

In the stochastic differential equation (SDE) (6.1.1), as ¢ — O, the differential
equation becomes nonstochastic but remains of first order in ¢, and the limit ¢ — 0
is therefore not singular. In contrast, in the Fokker-Planck equation (FPE) (6.1.2),
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the limit ¢ — O reduces a second-order differential equation to one of first order.
This limit is singular and any perturbation theory is a singular perturbation theory.
The solution to (6.1.1) is known exactly—it is (4.4.26)

x(1) = ce + ¢ [ ek aW(rr) 6.1.3)
0

which can be written
xo(t) = xo(t) + ex,(t) (6.1.4)

and this is generic; that is, we can normally solve in a power series in the small
parameter . Furthermore, the zero-order term x,(#) is the solution of the equation
obtained by setting ¢ = 0, i.e., of

dx = — kx dt . (6.1.5)

The situation is by no means so simple for the Fokker-Planck Equation (6.1.2).
Assuming the initial condition ¢ is a nonstochastic variable, the exact solution is the
Gaussian with mean and variance given by

(x(1)) = a(t) = ce™ (6.1.6)
var {x(1)) = eB(t) = (1 — e~*)[2k (6.1.7)
so that @
11 1 [x—a®)P '

pe(x, t|c,0) = ?\/TWCXP — W . (6.1.8)

The solution for the conditional probability has the limiting form as ¢ — 0 of
p(x, t]|c, 0) — 8[x — a(t)] 6.1.9)

which corresponds exactly to the first-order solution of the SDE, which is a deter-

ministic trajectory along the path x(¢) = ¢ exp (— kt). However, p, cannot be ex-

panded as a simple power series in &. To carry out a power series expansion, one
must define a scaled variable at each time;

y=[x—a(t)le (6.1.10)

so that a probability density for y is
_ dx
pC(yat|0’0)=pn(x,I|c’0)a; (6.1.11)

BN SERN B
- 7576 |~ 0] (6112
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The probability density for the scaled variable y has no singularity; indeed, we have
no ¢ dependence.
The transformation (6.1.10) can be rewritten as

x = a(t) + ey (6.1.13)

and is to be interpreted as follows. From (6.1.12) we see that the distribtuion of y is
Gaussian with mean zero, variance f(¢). Equation (6.1.13) says that the deviation of
x from a(t), the deterministic path, is of order ¢ as ¢ — 0, and the coefficient is the
Gaussian random variable y. This is essentially the same conclusion as was reached
by the SDE method.

The general form of these results is the following. We have a system described
by the SDE s

dx = a(x)dt + eb(x) dW(t). (6.1.14)
Then we can write the solution as
x(1) = xo(t) + ex,(t) + e2x,(t) + ... (6.1.15)

and solve successively for the x,(¢). In particular, x,(¢) is the solution of the deter-
ministic equation

dx = a(x)dt . (6.1.16)
Alternatively, we consider the Fokker-Planck equation

0.p = — 9.[a(x)p] + $€?0i[b(x)*p] . (6.1.17)
Then by changing the variable to the scaled variable and thus writing

y =[x — x0))/e (6.1.18)

Py, 1) =ep(x,t|c,0), (6.1.19)

we can write the perturbation expansion
by, 1) =B, 1) + ei(», 1) + €5y, 1) + ... (6.1.20)

Here we will find that py(y, ) is indeed a genuine probability density, i.e., is positive
and normalised, while the higher-order terms are negative in some regions. Thus, it
can be said that the Fokker-Planck perturbation theory is not probabilistic. In
contrast, the SDE theory expands in a series of random variables x,(¢), each of which
has its own probability distribution. At every stage, the system is probabilistic.
And finally, the most noticeable difference. The first term in the SDE perturba-
tion theory is x,(¢) which is the solution of the SDE obtained by setting ¢ = 0 in
(6.1.1). In contrast, the first term pq(y, t) in (6.1.20) is not the solution of the equa-
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tion obtained by setting ¢ = 0 in (6.1.2). In general, it is a limiting form of a FPE
for p.(y, t) obtained by setting ¢ = 0 in the FPE for the scaled variable, y

6.2 Small Noise Expansions for Stochastic Differential Equations

We consider a stochastic differential equation of the form
dx = a(x)dt 4 eb(x)dW(t) (6.2.1)

in which ¢ is a small parameter. At this stage we exclude time dependence from a(x)
and b(x), which is only necessary in order to simplify the algebra. The results and
methods are exactly the same. We then assume that the solution x(¢) of (6.2.1) can
be written

x(t) = xo(t) + &x,(t) + e*x,(2) + ... . (6.2.2)
We also assume that we can write

a(x) = a(x, + e x, + e*x, + ...) (6.2.3)
= ay(xo) + € a\(xo, X;) + €%ax(xo, Xy, X2) + ... (6.2.4)

The particular functional dependence in (6.2.4) is important and is easy to
demonstrate, for )

a(x) = a(x, + i] E™X ) ‘

(Z E™Xpm)? . 6.2.5)

Formally resumming is not easy, but it is straightforward to compute the first few
powers of ¢ and to obtain

ay(xo) = a(xo)

di
a,(x,, X;) = X, 2-(;0)

ay(%o, X1, X;) = d‘;i:” + ; x? 5(’2‘0) (6.2.6)
da(x,) d*a(x,) | 1 d da(x,)

a3(xo, X1, X35 X3) = X3 K + XX, —5 dx’ + — 6 ax:

Although it is not easy to write explicitly the full set of terms in general, it is easy to
see that we can always write forn > 1,

da(x,)

an(xo, Xpy -e- xn) = Xn 3 d + An(xOy Xy .- xn—l) ’ (6.2.7)
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where it is seen that A, is independent of x,. In fact, it is easy to see directly from
(6.2.5) that the coefficient of &” can only involve x, if this is contributed from the
term p = 1, and the only other possibility for &” to arise is from terms with m < n,
which do not involve x,.

The form (6.2.7) for a, is very important. It is clear that if we also require

b(x) - bO(xo) + £ b](xo, xl) + szbz(x(p xl, xz) + ey (6.2.8)

then all the same conclusions apply. However, they are not so important in the
perturbation expansion.

We now substitute the expansions (6.2.2, 7, 8) in the stochastic differential equa-
tion (6.2.1) and equate coefficients of like powers of ¢. We then obtain an infinite
set of SDE’s. In these we use the notation

k(xp) = — dfi(T)ZO) (6.2.9)
which simplifies the notation.
We obtain
dx, = a(x,)dt (6.2.10a)
dx,= [—k(x0)x, + Ax(X0s --- Xn_y)ldt + b,_;(Xo, ... X,_))dW(t) . (6.2.10b)

These equations can now be solved sequentially. Equation (6.2.10a) is a (possibly
non-linear) ordinary differential equation whose solution is assumed to be known,
subject to an initial condition. It is of course possible to assume independent
nontrivial initial conditions for all the x,, but this is unnessarily complicated. It is
simplest to write (setting ¢ = 0 as the initial time)

x0(0) = x(0) (6.2.11)
x,0=0 n>x=1l.
Assuming that the solution of (6.2.9) is given by
xo(t) = a(?), (6.2.12)
the equation (6.2.10a) for n = 1 can be written as
dx, = —kl[a(t)]x,dt + bla(t)ldW(t), (6.2.13)

where we have noted from (6.2.5) that A4, vanishes and b, = b.

This equation, the first of a perturbation theory, is a time-dependent Ornstein-
Uhlenbeck process whose solution can be obtained straightforwardly by the
methods of Sect.4.4.9, reduced to one dimension. The solution is obtained simply
by multiplying by the integrating factor
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exp J ke
and is
xi(1) = [ bla(t')] exp{— [ Kla(s)ds}dW(r"), (6.2.14)

where the initial condition x,(0) = 0 has been included.

For many purposes this form is quite adequate and amounts to a linearisation
of the original equation about the deterministic solution. Higher-order terms are
more complex because of the more complicated form of (6.2.10b) but are, in
essence, treated in exactly the same way. In order to solve the equation for xx(?),
we assume we know all the x,(¢) forn < Nsothat 4,and b,_, become known (sto-
chastic) functions of ¢ after substituting these solutions. Then (6.2.10b) becomes

dxy = {—kla(t)lxy + An()}dt + by_,(t)dW(2) (6.2.15)

whose solution is obtained directly, or from Sect.4.4.9, as
xn(t) = [[An(t)dt" + by_y(t)dW(t")] exp{— [ kla(s))ds} . (6.2.16)
0 14

Formally, the procedure is now complete. The range of validity of the method and
its practicability are yet unanswered. Like all perturbation theories, terms rapidly
become unwieldy with increasing order.

-~

6.2.1 Validity of the Expansion

The expansion will not normally be a convergent power series. For (6.2.14) shows
that x,(¢z) is a Gaussian variable, being simply an Ito integral with nonstochastic
coeflicients, and hence x,(¢) can with finite probability assume a value greater than
any fixed value. Thus, only if all power series involved in the derivation of (6.2.5)
are convergent for all arguments, no matter how large, can we expect the method
to yield a convergent expansion.

We can, in fact, show that the expansion is asymptotic by using the results on
dependence on a parameter given in Sect.4.3.7.
We define a remainder by

Vale, 1) = [x(1) — 2 & x,(O)fe (6.2.17)

where the x,(t) are solutions of the set of stochastic differential equations (6.2.10)
with initial conditions (6.2.11).
We then derive an equation for y,(t). We can write

alx(t)] = al 33 ¢'x,(1) + ule, )" (6.2.18)
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and we define a function a,,,[X,, X3, X, ...X,, ¥, é:] by
dn+l[X0, Xh X9 Y9 8] =g} {a[i 8’X, + 8"+IY]
r=0

— 3 ea (X, Xy, . X)) - (6.2.19)

r=0

We require that for all fixed X, X, ... Xy, ¥,

lim d,,,[Xe, Xy, ... X Y, €] (6.2.20)
e—0

exists. We similarly dgﬁne b[Xo, Xy, ... X», Y, €] and impose the same condition on it.
This condition is not probabilistic, but expresses required analytic properties
of the functions a(x) and b(x); it requires, in fact, that the expansions (6.2.4, 8)
be merely asymptotic expansions.
Now we can write the differential equation for y,(¢, t) as

dyn = du+l[-x0 (t)7 xl(t)9 X,,(t), Vs 8] dt
+ blxo(t), x,(1), .. Xo_s(1), Yar €] dW(2) . (6.2.21)

The coefficients of df and dW(t) are now stochastic functions because the x,(t) are
stochastic. However, the requirement (6.2.20) is now an almost certain limit, and
hence implies the existence of the stochastic limits

St'!‘i:n én+l[x0(t)9 xl(t)y e xn(t)a ym 8] = dn+l(t9 yn) (6222)
and

st-lim b, [xo(2), X1(2), ... Xo_1(2), Vi, € = bo(2, ¥1) (6.2.23)

which is sufficient to satisfy the result of Sect.4.3.7 on the continuity of solutions
of the SDE (6.2.21) with respect to the parameter ¢, provided the appropriate Lip-
schitz conditions (ii) and (iii) of Sect.4.3.7 are satisfied. Thus, y,(0, t) exists as a
solution of the SDE

dy,(0, 1) = dyalt, y,0, ] + b,[t, y.(0, )IdW(1) (6.2.24)
which, from the definition (6.2.17) shows that

x(1)— Zl &x,(t) ~ et (6.2.25)
Hence, the expansion in power of ¢ is an asymptotic expansion.

6.2.2 Stationary Solutions (Homogeneous Processes)

A stationary solution is obtained by letting t — co. If the process is, as written,
homogeneous and ergodic, it does not matter what the initial condition is. In this
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case, one chooses x,(0) so that a[x,(0)] vanishes and the solution to (6.2.10a)
is

Xo(t) = x0(0) = & (6.2.26)

[where we write simply « instead of a(t)].
Because of the initial condition 8, at 1 =0the solution (6.2.14) to the equation of
order one is not a stationary process. One must either let t — oo or set the initial

condition not at t = 0, but at # = — oco. Choosing the latter, we have

xi(t) = __[; b(a) exp [—(t — t")k(a)]dW(') . (6.2.27)
Similarly,

x3(t) = _Ji [A:(¢Ndt’ + b:_(tYdW(t)] exp [—(t — tHk(a)], (6.2.28)

where by 42 and b;_, we mean the values of 4, and b,_, obtained by inserting the
stationary values of all arguments. From (6.2.28) it is clear that x3(¢) is, by construc-
tion, stationary. Clearly the integrals in (6.2.27, 28) converge only if k(a) > 0,
which will mean that only a stable stationary solution of the deterministic process
generates a stationary solution by this method. This is rather obvious—the addition
of fluctuations to an unstable state gerives the system away from that state.

6.2.3 Mean, Variance, and Time Correlation Function

If the series expansion in ¢ is valid in some sense, it is useful to know the expansion
for mean and variance. Clearly

(D)) = 3 e ¢x0)) (6.2.29)
var {x()) = 336" 33 Cxn(Dxan(t)) — X)) CEan] (6.230)

Since, however, we assume a deterministic initial condition and x,(¢) is hence deter-
ministic, all terms involving x,(¢) vanish. We can then work out that

var {x(¢)} = e’var{x,(1)} + 2&3(x (1), x(2))
+ &¥2¢x,(1), x3(t)) + var{xy,()}] + ... (6.2.31)
and similarly,
(x(2), x(s)) = eXxi(1), x,(5)) + [<x, (1), x5(5)) + <x1(8), X2(1))]

+ e [xi(1), x3(5)) + {xi(5), x3(1)) + {xy(2), x2(s)]
“+ ... (6.2.32)
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6.2.4 Failure of Small Noise Perturbation Theories

a) Example: Cubic Process and Related Behaviour
Consider the stochastic differential equation

dx = —x3dt + e dWA(1) . (6.2.33)

It is not difficult to see that the expansion conditions (6.2.20) are trivially satisfied
for the coefficients of both dt and dW(t), and in fact for any finite ¢, an asymptotic
expansion with terms x,(¢) given by (6.2.16) is valid. However, at x = 0, it is clear
that

%(xﬂ) = k©) =0, (6.2.34)

]

and because x = 0 is the stationary solution of the deterministic equation, the per-
turbation series for stationary solutions is not likely to converge since the exponen-
tial time factors are all constant. For example, the first-order term in the stationary
expansion is, from (6.2.27),

X(1) = | dW(t) = W(r) — W(—oo) (6.2.35)

which is infinite with probability one (being a Gaussian variable with infinite
variance).

The problem is rather obvious. Near x = 0, the motion described by (6.2.33)
is simply not abie to be approximated by an Ornstein-Uhlenbeck process. For
example, the stationary probability distribution, which is the stationary solution
of the FPE

0,p = 0.(x°p) + $e*dlp, (6.2.36)
is given by
Po(x) = A exp (—x*[2¢?) (6.2.37)

and the moments are

(xmy = (267 r(n + 1) /1-( ) (n even) (6.2.38)
=0 (n odd).

The lowest-order term of the expansion of the variance is proportional to ¢ to the
first power, not ¢* as in (6.2.31).

In this case, we must simply regard the cubic process described by (6.2.33) as a
fundamental process. If we introduce the new scaled variables through the de-
finitions
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x=ey (6.2.39)

t=1/e
and use

dW(tle) = dW(1)[/ ¢, (6.2.40)
then the cubic process can be recuced to a parameterless form

dy = —ydt + dW(z) . (6.2.41)
Regarding the solution of (6.2.41) as a known quantity, we can write

x(t) = /¢ yet) (6.2.42)

so that the limit ¢ — 0 is approached like /¢, and also with a slower time scale.
This kind of scaling result is the basis of many critical phenomena.

A successful perturbation theory in the case where a(x) behaves like x* near x =0
must involve firstly the change of variables (6.2.39) then a similar kind of pertur-
bation theory to that already outlined—but in which the zero-order solution is
the cubic process. Thus, let us assume that we can write

a(x) = —x%(x), ¥ (6.2.43)

where ¢(x) is a smooth function with ¢(0) # 0. Then, usiné the transformations
(6.2.39,40), we can rewrite the SDE as

dy = —y’c(y/&)dr + b(y/e)dW(1) . (6.2.44)

If we expand y(1), c(ya/¢), b(¥~/¢) as series in /¢, We obtain a perturbation
theory. If we write

OEIWAOR (6.2.45)
n=0
then we get for the first two terms

dyy = —yeO)dr + bO)dW(z) (6.2.46)
B0 =~ B5(0) + RGO |de + [ L O W) (6.2.47)

We see that the equation for y, is in fact that of a time-dependent Ornstein-Uhlen-
beck process with stochastic coefficients. Thus, in principle, as long as the cubic
orocess is known, the rest is easily computed. In practice, not a great deal is in fact
<nown about the cubic process and this kind of perturbation is not very practical.
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b) Order v Processes (v odd)
If instead we have the Stochastic differential equation

dx = —x*dt + ¢dW(t), (6.2.48)

we find a stable deterministic state only if v is an odd integer. In this case we make
the transformation to scaled variables

x = pg/a+w (6.2.49)
[ = 7 g2-w/G+n (6.2.50)

and follow very similar procedures to those used for the cubic process.

c) Bistable Systems
Suppose we have a system described by

dx = (x — x%)dt + ¢ dW(1) (6.2.51)

for which there are three deterministic stationary states, at x = 0, + 1. The
state at x = 0 is deterministically unstable, and we can see directly from the per-
turbation theory that no stationary process arises from it, since the exponentials in
the perturbation series integrals (6.2.27, 28) have increasing arguments.

The solutions xo(7) of the deterministic differential equation

dxjdt = x — x3 (6.2.52)
divide into three classes depending on their behaviour as 1 — co. Namely,

1) xo(1) < 0= xo(t) — —1
i) x0(0) = 0= x,(t) =0 forall¢
i) xo(t) > 0= x4(t) — 1.

Thus, depending on the initial condition, we get two different asymptotic ex-
pansions, whose stationary limits represent the fluctuations about the two deter-
ministic stationary states. There is no information in these solutions about the
possible jump from the branch x =1 to the branch x = — 1, or conversely — at least
not in any obvious form. In this sense the asymptotic expansion fails, since it does
not give a picture of the overall behaviour of the stationary state. We will see in
Chap. 9 that this results because an asymptotic expansion of behaviour characteris-
tic of jumps from one branch to the other is typically of the order of magnitude
of exp (— 1/e?), which approaches zero faster than any power as ¢ — 0, and thus is
not represented in an expansion in powers of e.

6.3 Small Noise Expansion of the Fokker-Planck Equation

As mentioned in Sect.6.1, a small noise expansion of a Fokker-Planck equation is
a singular expansion involving the introduction of scaled variables. Let us consider
how this is done.



188 6. Approximation Methods for Diffusion Processes

We consider the Fokker-Planck equation

0,p = —0.[A(x)p] + 4e*3YB(x)p] - (6.3.1)
We assume the solution of the deterministic equation to be a(¢) so that

dia(t) = Ala()] . (6.3.2)

and introduce new variables (y, s) by

y =[x —a(t)le (6.3.3)
s=1 (6.3.4)
and p(y,s) =¢ep(x,t). (6.3.5)

We note that

dpay  dpds _  a() ap , ap

9.6(y, s) = 8—5—+a— ;= p ay+as (6.3.6)
)

xp(y7 S) ? 5?; (6.37)

¥
so that substituting into (6.3.1) we get, with the help of the equation of motion
(6.3.2) for a(t) .

ap 0 [Ala(s) + ey] — Ale(s)]
os  dy €

o+ 5 5 Bla® + 20} . (639)

We are now in a position to make an expansion in powers of &. We assume that A4
and B have an expansion in powers of ¢ of the form

Ala(s) + ey] = g 4,(s)e"y" (6.3.9)
Bla(s) + &y] = 5;“0 B (s)e"y” (6.3.10)

and expand p in powers of &:

p=3pe. (6.3.11)

Substituting these expansions into the FPE (6.3.8), we get by equating coefficients

aff A,(s) ;,,,(ypo) + 5 Bo(s)a D (6.3.12)
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0 (7 vep 4 q 1 & = . o=
FI _‘5[.41(5)}’171 + Aa(s)y?*po] + 75}—,2[30(5)171 + B\(s)ypo] (6.3.13)
and, in general,

op, 0
as dy

r - 2 r -
mz_oy"’"“ A,_,,,,,.(s)ﬁ,,.] + % ;—}ﬂ Lgoy""'B,_,,,(s)p‘m] . (6.3.14)
Only the equation for p, is a FPE and, as mentioned in Sect.6.1, only p, is a proba-
bility. The first equation in the hierarchy, (6.3.12), is a time-dependent Ornstein-
Uhlenbeck process which corresponds exactly to (6.2.13), the first equation in the
hierarchy for the stochastic differential equation. Thereafter the correspondence
ceases.

The boundary conditions on the p, do present technical difficulties since the
transformation from x to j is time dependent, and a boundary at a fixed position in
the x variable corresponds to a moving boundary in the y variable. Further, a
boundary at x = a corresponds to one at

y= [aﬁeﬂ (6.3.15)

which approaches 4+ oo as ¢ — 0. There does not seem to be any known technique
of treating such boundaries, except when @ = 4+ oo, so that the y boundary is also
at 4 oo and hence constant. Boundary conditions then assume the same form in the
y variable as in the x variable.

In the case where the boundaries are at infinity, the result of the transformation
(6.3.3) is to change a singular perturbation problem (6.3.1). (in which the limit
e — 0 yields an equation of lower order) into an ordinary perturbation problem
(6.3.8) in which the coefficients of the equation depend smoothly on ¢, and the limit
e — 0 is an equation of 2nd order. The validity of the expansion method will
depend on the form of the coefficients.

6.3.1 Equations for Moments and Autocorrelation Functions

The hierarchy (6.3.14) is not very tractable, but yields a relatively straightforward
procedure for computing the moments perturbatively. We assume that the boun-
daries are at 4 oo so that we can integrate by parts and discard surface terms.
Then we define

WOF> = S e M) (6.3.16)
Then clearly

M) = [ dy yp.(y, 1) (6.3.17)

Then using (6.3.12-14), we easily derive by integrating by parts
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dﬂg(t) =3 {” Ao () MET7(0) + "(—"7_-1—) B,_n(t) Myt )] (6.3.18)

which is a closed hierarchy of equations, since the equation for M?(¢) can be solved
it all M2(t) are known form <rand p <n 4+ r.
Writing out the first few for the mean M!(¢) and mean square M2(¢), we find

IO _ 1 oymio) + DM (6.3.20)
WD _ 1 my0) + BOMIO+ AOM) (63.21)
“%‘2’(’—) — 24,(0)MA1) + Bat) 6.3.22)
WO _ 5 LMD + 200M3) + BOMYD) (63.29)
dig(’—) = 34,(t)M3(t) + 3B,(t)M(1) . (6.3.24)
¥
In deriving the last two equations we note that
Mt) = [dy p,(y, 1) (6.3.25)
and using
fdypr, 0 =1=S &M (6.3.26)
we see that
MY(t) = 1 (6.3.27)
M(t)y=0 re#l. (6.3.28)

The equations are linear ordinary differential equations with inhomogenieties that
are computed from lower equations in the hierarchy.

a) Stationary Moments
These are obtained by letting t — oo and setting the left-hand side of (6.3.18) equal
to zero. (All coefficients, 4, B, etc. are taken time independent.)

From (6.3.19-22) we find

Mi(c0) =0
M3(c0) = —4Bo/4,
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Mi(c0) =0
Mi(0) = —A,M3(c0)/ 4, = } 4,B,/(4,)* (6.3.29)
Mi(o0) = —,ZzMg(OO)/ZI =0
M (c0) = —‘[/‘izM%("O) + ZaMg(oo)]/,Z, =0.

Thus, the stationary mean, variance, etc., are

(x), = a + e[Mg(c0) + eM|(c0) + e?M3(c0)]
= a + $e24,B,/(4,)* (6.3.30)

var {x}, = (3%, — (x,)?

= {a + ey)*), — {a + ey)? = e*var{y},

2 .
= —% By/4, to order &* . (6.3.31)

The procedure can clearly be carried on to arbitrarily high order. Of course
in a one-variable system, the stationary distribution can be evaluated exactly and
the moments found by integration. But in many variable systems this is not always
possible, whereas the multivariate extension of this method is always able to be
carried out.

b) Stationary Autocorrelation Function

The autocorrelation function of x is simply related to that of y in a stationary
state by

(x(1)x(0))s = a* + e2{p(1)¥(0)), (6.3.32)

and a hierarchy of equations for {y(#)y(0)) is easily developed. Notice that

2y, = ([Hlet Ol =A@

+ fn(n — DBla + ey()]y(1)"72) ¥(0)), (6.3.33)

which can be derived by using the FPE (6.3.1) for p(y, | y,, t;) and integrating by
parts, or by using Ito’s formula for the corresponding SDE.

Using the definition of 4,, B, in (6.3.9.10) and expanding 4 and B in a power
series, we get

4 OOrOD, = £ o5 [, 0 (O,

n(n

+ 10 =D g otmrryop,). (6334

These equations themselves form a hierarchv which can be simplv solved in a power
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series in €. Normally one is most interested in {y(z)y(0),, which can be calculated
to order &7, provided one knows {J(¢)°y(0),> for p < q + 1. We have the initial
condition

KO p(0)), = (y"*'), (6.3.35)

and the stationary moments can be evaluated from the stationary distribution,
or as has just been described.

6.3.2 Example

We consider the Fokker-Planck equation

a a 2 az

for which we have [in the stationary state a(t) = 0]

f?l = —'l
/i'z = 0
1‘?3 = —l
A,=0(g>3) . (6.3.37)
~0 = %611,0
a =0. ‘
Using (6.3.30, 31) we have
X, =0 (6.3.38)

var {x}, = £%/6 .
For convenience, let us use the notation
(1) = {y()y(0)>s (6.3.39)

so that the equations for the ¢, and c¢; are

c% —1 —& a

= (6.3.40)
‘& 1 -3 c
dt 3

[the equations for the ¢,, decouple from those for ¢,,,, because B(x) is constant and
A(x) is an odd function of x].

It is simpler to solve (6.3.40) exactly than to perturb. The eigenvalues of the
matrix are
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/11=—2+\/1—82

- (6.3.41)
lz = —2 —4\/1 —_ 82
and the corresponding eigenvectors
{ I+ /1T — s’}
u, = |
- (6.3.42)
[1 — /1 = sz}
uz = .
1
The solution of (6.3.40) can then be written
a(r) _ -
= aqye”Mu, + a,e"Mu, (t>0). (6.3.43)
os(1)
The initial condition is
p— 2
C](O) - <y >s (6.3.44)

¢3(0) = (%

We can compute {y*), using the moment hierarchy (6.3.10) extended to Mg: we
find

on

[J~~N

1
4 _— — 4
Mo 5 ..I 12 (63 5)

then (y*> = 1/12.

Hence, we obtain

1/6 = 6.3.46
[1/12] = a\l + al, (6.3.46)

which have the solutions

@ =gl + VT =T —¢
(6.3.47)
= (— 1+ T/ T=2.
The correlation function is, to 2nd order in ¢ (many terms cancel)

e(t) = % e thit (6.3.48)

Notice that the eigenvalues A, and 1, depend on €. Any attempt to solve the
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system (6.3.40) perturbatively would involve expanding exp (4,¢) and exp(4,¢) in po-
wers of €2 and would yield terms like t¥exp (—2¢) which would not be an accurate
representation of the long-time behaviour of the autocorrelation function.

The x correlation function is

x()x(0)), = &*¢\(1) (6.3.49)

and the spectrum

S() =& | dt e e, (t))2n (6.3.50)
e? 1
= Tan m] (6.3.51)

6.3.3 Asymptotic Method for Stationary Distributions

For an arbitrary Fokker-Planck equation
0.p = — S0P + 46 3. 00,B,p (6.3.52)

one can generate an asymptotic expansion for the stationary solution by setting

pu(x) = exp [—g(x)/e] ¢ (6.3.53)

in terms of which we find

[‘2 A(x)o:$ + % ‘2] B,(x)0,$0,4] + € [".;V_‘. 0,A(x) + ‘; 0,B,,0,¢
+ ‘2] 0,0,B,(x)] = 0. (6.3.54)

The first term, which is of order £, is a Hamilton Jacobi equation. The main sig-
nificance of the result is that an asymptotic expansion for ¢(x) can be, in prin-
ciple, developed:

#(x) = 3. £4,(x) (6.3.55)
where ¢,(x) satisfies

; A(x)3:go + % g B,,(x)0:$40;60 = 0 (6.3.56)

Graham and Tel [6.8, 9] have recently shown how equation (6.3.56) may be solved
in the general case. Their main result is that solutions, though continuous, in
general have infinitely many discontinuities in their derivatives, except in certain
special cases, which are closely related to the situation in which the FPE satisfies
potential conditions.
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6.4 Adiabatic Elimination of Fast Variables

It is very often the case that a dynamical system can be described by stochastic equa-
tions which have widely different response times and in which the behaviour on a
very short time scale is not of interest. The most natural example of this occurs in
Brownian motion. Here it is normal to observe only the position of the Brownian
particle, but the fundamental equations involve the momentum as well, which is
normally unobservable. Thus, Langevin’s equation (1.2.14) can be rewritten as an
equation for position and velocity as

dx
=2 (6.4.1)
m®— _ po 1 apTE0). (6.4.2)

If we interpret the equations as Ito stochastic differential equations, the method of
solution has already been given in Sect.4.4.6. However, it is simpler to integrate
(6.4.2) first to give the solution

w(t) = v(0) exp (—Btjm) + ‘%—”’ fexp (=0t — ymilctenrar'. (6.4.3)

We now want to consider the situation in which the friction coefficient fis not small
but the mass m is very small. Then for times ¢ such that

t>mlip=r1, (6.4.4)

the exponential in the first term will be negligible and the lower limit in the integral
will be able to be extended to — oo, without significant error. Hence,

ot) = Y2KTE | oxp [ — oypaecerar. (64.5)

Here 7 will be called relaxation time since it determines the time scale of relaxation
to (6.4.5).
Let us define

n(t, 1) =1 | exp[—(t — t')/ddW(¢’) (6.4.6)

which is, from Sect.4.4.4, a stationary Ornstein-Uhlenbeck process. The correlation
function is

<nte, (e, D = 3= exp (— [t — £']/7) (64.7)

— 8 —1). (6.4.8)



196 6. Approximation Methods for Diffusion Processes

We see that the limit 7 — 0 corresponds to a white noise limit in which the correla-
tion function becomes a delta function.
Thus, we can write (6.4.1) as

- Jﬂ (1, 7) (6.4.9)
B
and in the limit T — 0, this should become

ax _ \/i"T_T &) (6.4.10)

An alternative, and much more transparent way of looking at this is to say that in
(6.4.2) the limit m — O corresponds to setting the left-hand side equal to zero, so
that

2kT

o(t) = v ==&). (6.4.11)

The reasoning here is very suggestive but completely nonrigorous and gives no idea
of any systematic approximation method, which should presumably be some
asymptotic expansion in a small dimensionless parameter. Furthermore, there
does not seem to be any way of implementing such an expansion directly on the
stochastic differential equation—at feast to the author’s knowledge no one has
successfully developed such a scheme. e

The Fokker-Planck equation equivalent to (6.4.1, 2) for the distribution func-
tion p(x, v, t) is

ap kT o*p
P ( )+ ( )+ e (6.4.12)

We define the position distribution function p(x, t) by
p(x, t) = ]: dvp(x, v, t). (6.4.13)

T'hen we expect that, corresponding to the “reduced” Langevin equation (6.4.10)
the FPE for p(x, t) is

ap _kT@p
5 = 7 o (6.4.14)

We seek a way of deriving (6.4.14) from (6.4.12) in some perturbative manner, so
that we obtain higher corrections in powers of the appropriate small parameter.

More generally, we can consider Brownian motion in a potential for which the
Langevin eauations are (Sect.5.3.6)
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(6.4.15)
m% = — fv — V'(x) + V2BkT (1) -

The limit of large B should result in very rapid relaxation of the second equation
to a quasistationary state in which dv/dt — 0. Hence, we assume that for large
enough B,

v=— V') — VIPRT &) (64.16)
and substituting in (6.4.15) we get

dx i 2kT

= —BW'(x) + Té(t) 6.4.17)

corresponding to a FPE for p(x) known as the Smoluchowski equation:

In this case we have eliminated the fast variable v, which is assumed to relax
very rapidly to the value given by (6.4.16).

This procedure is the prototype of all adiabatic elimination procedures which
have been used as the basis of Haken’s slaving principle [6.1]. The basic physical
assumption is that large B (or, in general, short relaxation times) force the variables
governed by equations involving large § (e.g., v) to relax to a value given by assum-
ing the slow variable (in this case x) to be constant. Such fast variables are then
effectively slaved by the slow variables.

Surprisingly, the problem of a rigorous derivation of the Smoluchowski equa-
tion and an estimation of corrections to it, has only rather recently been solved.
The first treatment was by Brinkman [6.2] who only estimated the order of magni-
tude of corrections to (6.4.18) but did not give all the correction terms to lowest
order. The first correct solution was by Stratonovich [Ref. 6.3, Chap. 4, Sect. 11.1].
Independently, Wilemski [6.4] and Titulaer [6.5] have also given correct treatments.

In the following sections we will present a systematic and reasonably general
theory of the problem of the derivation of the Smoluchowski equation and correc-
tions to it, and will then proceed to more general adiabatic elimination problems.
The procedure used is an adaptation of projection operator methods, which have
been used in statistical physics, quantum optics, and related fields for many years.
These methods can be formulated directly in the time domain, but we will find it
more convenient to use a Laplace transform method, which was that originally used
by Wilemski. The manner of presentation is similar to that of Papanicolaou [6.6],
who has given a rigorous basis to its use in some problems. However, the de-
monstrations used here will be largely formal in character.
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6.4.1 Abstract Formulation in Terms of Operators and Projectors

Let us consider the rescaled form of the Fokker-Planck equation (6.4.12) derived
as (5.3.97) in Sect. 5.3.6, which we can write in the form

op

3= (L, + Ly)p, (6.4.19)

where L, and L, are differential operators given by

0 0
E oy @
Lz = — a—yu + U(y)au. (6.421)

We would like to derive an equation for the distribution function in y,

Py, t) = [ dup(u,y,t) (6.4.22)

which would be valid in the limit where y becomes very large.
It is expected that an approximate solution to (6.4.19) would be obtained by
multiplying p(y, t) by the stationary distribution of

P ¥

=Ly, ) (6.4.23)
that is, by

(2m)~12 exp (—3u?) . (6.4.24)

The reasoning is that for large p, the velocity distribution is very rapidly therma-
lised or, more crudely, we can in (6.4.19) neglect L, compared to L, and the solu-
tion is a function of y multiplied by a solution of (6.4.23), which approaches a
stationary solution in a time of order y~!, which will be very small.

We formalise this by defining a projection operator P by

(Pf) (4, y) = @m)™' * exp (—4u?) [ du f(u, y) . (6.4.25)
where f(u, y) is an arbitrary function. The reader may easily check that
P*=P. (6.4.26)

In terms of the vector space of all functions of # and y, P is an operator which pro-
jects any vector into the subspace of all vectors which can be written in the form of

g(u, y) = (2m)~'% exp (—32) £(») , (6.4.27)
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where £(y) is an arbitrary function of y. However, functions of the form (6.4.27)
are all solutions of

Lg=0, (6.4.28)

that is, the space into which P projects is the null space of L,. We may also note that
in this case

P =lim [exp (L:1)] (6.4.29)

To prove this, expan(f any function of u and y in eigenfunctions P,;(x) of L, as in
Sect.5.2.5:

fa, ) = 3 4:00) Py, (6.4.30)
where

Axy) = [ du Qu(u) flu, y). (6.4.31)
Then

lim [exp (Ly 1) fl, y)] = 33 Ax(y) lim €™ Py(u) (6.4.32)

= Po(u) | du Qo(u) f(u, y) (6.4.33)

and noting that for this process (Ornstein-Uhlenbeck)
Py(u) = 2n)~'"* exp (—u?) (6.4.34)
Qo) =1. (6.4.35)

We see that (6.4.29) follows.
In this case and in all other cases, we also have the essential relation

PL,P=0, (6.4.36)

For, considering PL,Pf(u, y), we see from the definition of L,, that L,Pf(u, y) is
proportional to

u exp (—u?) oc Py(u) (6.4.37)
and

PP(u) =0 (6.4.38)
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either by explicit substitution or by noting that P,(u) is not in the null space of L,.
Let us define

v=~Fp (6.4.39)

w=(l—P)p (6.4.40)
so that

p=v+w

and v is in the null space of L,, while w is not in the null space of L,.
We can now note that, from (6.4.29),

PL,=LP=0 (6.4.41)
and from the original equation we have

0
5,2 = P(yL, + Lyp

= P(yL, + Ly)[Pp + (1 — P)p]
= PL,(1 — P)p,

[where we have used (6.4.41) and (é4.36)] so that

ov
5= PL,w. (6.4.42)
Similarly,
Y — (1= PYoLy + Lp = (1 = PYyLy + L){Pp + (1 — Pyl

= yL,(1 — P)p + (1 — P)Ly(1 — P)p + (1 — P)L,Pp (6.4.43)

and using PL,P = 0, we have

‘;_’t” — yLow + (1 — P)Lyw + Ly . (6.4.44)

6.4.2 Solution Using Laplace Transform

The fundamental equations (6.4.42, 44) can be solved in a number of iterative ways.
However, since they are linear equations, a solution in terms of the Laplace trans-
form can be very appropriate and readily yields a perturbation expansion.
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The Laplace transform of any function of time f(¢) is defined by

f9)= I e f(1) (6.4.45)

and it may quite readily be defined for operators and abstract vectors in exactly the
same way. Our fundamental equations become, on using

fe"' L~ s f9)— 10). (6.4.46)

s 9(s) = PL,w(s) + v(0),

(6.4.47)
sw(s) = [yL, + (E — P)L,Jw(s) + Lyi(s) + w(0).

These equations are linear operator equations, whose formal solution is straight-
forward. For simplicity, let us first assume

w(0) =0 (6.4.48)
which means that the initial distribution is assumed to be of the form
p(u, y,0) = (2m)~""2 exp (—4u?) p(y, 0), (6.4.49)

that is, the initial thermalisation of the velocity u is assumed. Then we have formally

w(s) =[s — yL, — (1 — P)L,]'L,(s) (6.4.50)
and hence,
s 9(s) = PL,[s — yL, — (1 — P)L,]7'L,yi(s) + v(0) . (6.4.51)

We have here, at least formally, the complete solution of the problem. For any
finite s, we can take the large y limit to find

s 9(s) = —y 'PL,L;'L,i(s) + v(0). (6.4.52)
Notice that L;! does not always exist. However, we know that
PL,i(s) = PL,P p(s) =0 (6.4.53)

from (6.4.36). Hence, L,#(s) contains no component in the null space of L, and thus
L7L,i(s) exists.

In this case of Kramers’ equation, let us now see what (6.4.52) looks like. It is
equivalent to the differental equation

O — —yPLLi'Lyw. (6.4.54)




202 6. Approximation Methods for Diffusion Processes
Now note that
Ly = [— ai u—+ U'®y) —aa—] Po(u) [ du' p(', y, t) (6.4.55)
y u
[with Py(x) defined by (6.4.34)].

For this problem is it useful to bring in the eigenfunctions of the Ornstein-Uh-
lenbeck process [Sect.5.2.6¢c] which for these parameters,

4D =k =1 (6.4.56)

take the form

PA() = (21172 exp (— 3u9)Q,(u) (6.4.5)
with

0.(w) = 2"n!))"' *H,(u/+/2) . (6.4.58)
Using

L\P,(u) = —nP,(u) (6.4.59)
and the recursion formulae for Hermite polynomials

xH,(x) = $H,p(x) + nH,_.(x)‘ . (6.4.60)

%[e'*’H"(x)] = — e *’H,,.,(¥). (6.4.61)
we see that

L =~ [U0) + 5| P (6.4.62)
so that, using (6.4.59),

Li'Lo = [U0) + 55| Pi6p (6.4.63)

We now apply L, once more and use the relations (6.4.60, 61) again.
We find

LP\() = —[\/7 Piu) + Po(u>] ;% — VT PU) (6.4.64)

iy o=y 9
PLL' L = = S U0) + & p0)Po) (64.65)
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and the equation of motion (6.4.54) takes the form [after cancelling the factor Py(u)]

B _ 10 [y, ap
5 =7 'a—y[uo)p + ay] (6.4.66)

which is exactly the Smoluchowski equation, derived using the naive elimination
given in Sect. 6.4.

6.4.3 Short-Time Behaviour

One should note that the limit y — co in (6.4.52) implies that s is finite, or roughly
speaking

y>s. (6.4.67)
Thus, the solution for the Lapace transform will only be valid provided

s<y (6.4.68)
or for the solution, this will mean that

[ (6.4.69)
Let us define

s, = syt (6.4.70)
so that (6.4.51) becomes

y$;% = PL,[s;y — Lyy — (1 — P)L,]™'L,% + v(0) . (6.4.71)
The limit y — oo gives

y$i0 = y'PLy(s, — L)™' L,% + v(0) . (6.4.72)
Using the fact that L,? is proportional to P,(u) (6.4.62), we see that

yi0 = y~s; + 1)7'PLZ5 + v(0) . (6.4.73)

Changing back to the variable s again and rearranging, we find
-1
57 = y1 (% + 1) PL35 + v(0) (6.4.74)

which is equivalent to

& _
o _

O

dt’ exp [y(t' — 1)|PL3v(t')dt . (6.4.75)



204 6. Approximation Methods for Diffusion Processes
Alternatively, we can rewrite (6.4.74) in the form

% [5%6 — sv(0)] + [s5 — v(0)] = y'PL2v (6.4.76)

which, using (6.4.46) and the same working out as in Sect. 6.4.2, is equivalent to the
equation for p:

| o, ., 0,
7;,2 +a- =" é;,[U »np + 5?)] (6.4.77)

in which the initial condition
9 o _
3 ©0)=0
is implied because
[emf"(t) = s* f(s) — s f(0) — f(0)
[\

and no constant term appears in the first bracket in (6.4.76). We may smiilarly
rewrite (6.4.75) or integrate (6.4.77) to get

L—plvor+ | fareone —oper. | - (6.4.78)

Equations (6.4.77, 78) demonstrate a non-Markov nature, seen explicitly in (6.4.78)
which indicates that the prediction of p(z + At) requires the knowledge of p(t) for
0 < t' < t. However, the kernel exp [y(t' — ¢)] is significantly different from zero
only for |¢t' —t| ~ ™' and on a time scale much longer than this, (6.4.78) is
approximated by the Smoluchowski equation (6.4.66). Formally, we achieve this by
integrating by parts in (6.4.78):

/)= p(t)—e_"ﬁ(o) .

y r { exp [»(t' — t)]g?dt'. (6.4.79)

g'dt' exp [t — D] plt

Neglecting the last term as being of order y~2, we find the Smoluchowski equation
replaced by

2—2lvor+ 2] o0 —er00) (6.4.80)

This equation is to lowest order in y equivalent to (6.4.78) for all times, that is, very
short (<y™') and very long (>>y™') times. It shows the characteristic “memory
time”, y~!, which elapses before the equation approaches the Smoluchowski form.
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To this order then, the process can be approximated by a Markov process, but
to the same order, there are the alternative expressions (6.4.77, 78) which are not
Markov processes. Clearly, to any higher order, we must have a non-Markov pro-
ces.

6.4.4 Boundary Conditions

Let us consider a barrier to be erected at y = a with the particle confined to y < a.
The behaviors for # > 0 and u < 0 are distinct.
From the stochastic differential equations

dy = ud , (6.4.81)
du = —[U'(y) + yuldt + /2y dW(1)

We see that
foru > 0, y = ais an exit boundary

foru <0, y = ais an entrance boundary.

since a particle with # > 0 at y = @ must proceed to y > a or be absorbed. Simi-
larly, particles to the left of the boundary can never reach y = aif u < 0. Conven-
tionally, we describe y = a as absorbing or reflecting as follows:

i) absorbing barrier: particle absorbed for u > 0, no particles with u < 0

>pu,a,t)=0 u>0 (6.4.82)
=0 u<o0

The first condition is the usual absorbing boundary condition, as derived in Sect.

5.2.1. The second condition expresses the fact that any particle placed with ¥ < 0

at y = a immediately proceeds to y < a, and no further particles are introduced.
The absorbing barrier condition clearly implies

p(a,t) =0 (6.4.83)

which is the usual absorbing barrier condition in a one variable Fokker-Planck
equation.

ii) “reflecting” barrier: physically, a reflection at y = a implies that the particle
reaches y = a with the velocity u, and is immediately reflected with a different
but negative veloicty. If we assume that

u— —u,

then we have a “periodic boundary condition as in Sects. 5.2.1 and 5.3.2 This
means that

p(u,a,t) = p(—u,a,t) (6.4.84)
and that the normal component of the current leaving at (u, a) is equal to that
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entering at (—u, a). However, since for this equation
, op
J=j—up, u+ U p+vry, (6.4.85)

and the normal component is the component along the direction y, we see that
(6.4.84, 85) are equivalent.

This boundary condition leads very naturally to that for the Smoluchowski
equation.

(For (6.4.84) implies that only even-order eigenfunctions P,(u) can occur in
the expansion of p(u, a, t). Hence,

(l - P)p(us a, t) = W(ll, a, t) (6486)

contains only even eigenfunctions, and the same is true of w(y, a, s), the Laplace
transform. But, from (6.4.50) we see that to lowest order in y~!

w(u, a, s) = (—y 'L7'L,9)u, a, s) (6.4.87)

and using (6.4.63)
= — Py(wy™ {U’(y)ﬁ(y) + a,;%)} R (6.4.88)

Since this is proportional to the odd eigenfunction P,(u), it vanishes. Hence we
derive

[U'(y)ﬁ(y) + a’;%] =0 (6.4.89)

which is the correct reflecting barrier coundary condition for the Smoluchowski
equation.

It is not difficult to show similarly that the same boundary conditions can be
derived for the equations derived in Sect.6.4.3.

6.4.5 Systematic Perturbative Analysis

We return now to (6.4.47), but again with w(0) = 0 for simplicity.
Then we have

w(s) = [s — yL, — (1 — P)L,]7'L,%(s) (6.4.90)
and
s 9(s) = PL,[s — yL, — (1 — P)L,]7'L,%(s) + »(0) . (6.4.91)

We can straightforwardly expand the inverse in (6.5.91) in powers of y. However,
the order of magnitude of s in this expansion must be decided. From the previous
sections we see that there is a possibility of defining
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1

sy =syt, T—y D (6.4.92)

which gives rise to an expansion in which the initial time behaviour in times of
order y~! is explicitly exhibited.
An alternative is to define

S, =5y, D — yP (6.4.93)

which we will find yields an expansion in which only the long-time behaviour is ex-
hibited.

By substituting (6.4.93) we find that (6.4.91) takes the form

5,9 = —PL,[L, + zl — P)L,y™' — 5,p7%7 L5 + v(0) (6.4.94)
and we may now write

§;0 = — PL,L{'L,5 + v(0) (y — o) (6.4.95)
whereas, without this substitution, the limit y — co yields simply

s = v(0) . (6.4.96)
This, is in fact, in agreement with (6.4.52), where we did not actually go to the

limit y — oo.
The substitution of s, = sy~!,

$;5 = y2PLyJs; — L, — (1 — P)L,y~"1" 'Ly 6(s) + v(0) (6.4.97)

does not lead to a limit as y — co. However, it does yield an expansion which is
similar to an ordinary perturbation problem, and, as we have seen, exhibits short-
time behaviour.

a) Long-Time Perturbation Theory
We can expand (6.4.94) to order y=2 in the form

50 = [A + By™ + (C + Ds,)y %o + v(0) (6.4.98)
with

A= —PLL;'L,

B=PLLi'(1 — P)L,L{'L,

C = —PL,L;i'(1 — P)L,L7'(1 — P)L,L;'L,
=—PL,L[%L,.

(6.4.99)

Rearranging (6.4.98) we have

sl — y™*DYo = [A + By~ 4 Cy~*]s + »(0) (6.4.100)
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or, to order y~2,
55 =[A + By™ + (C+ DAY™5 + (1 + y2D)n(0) . (6.4.101)

This gives the Laplace transform of an equation of motion for v, in which the initial
condition is not v(0), but (1 + y~2D)v(0). Notice that this equation will be of first
order in time, since s7 for n > 1 does not occur. This is not possible, of course, for
an expansion to higher powers of y.

b) Application to Brownian Motion
For Brownian motion we have already computed the operator 4 of (6.4.99); it is
given by (6.4.65)

A= —PL,L;'L, =(%[U'(y) + aa—y}. (6.4.102)

The other operators can be similarly calculated.
For example, from (6.4.63, 64),

LLi'L = — [P 3+ ¥/ Pi) [U'(y) + a%]] o)+

Multiplying by (1 — P) simply removes the term involving P,, and multiplying by
L;! afterwards multiplies by — 4. Hence,

L1 = P)LLL, = /7 Pyu) [U'(y) + a%} .

We now use the Hermite polynomial recursion relations (6.4.60, 61) when multi-
plying by L,: we derive

L = [~ Zu+ U0) 2] Paw) (64.109)

— VT UGP) — %[JT P + T P,(u>] .

Finally, multiplying by P annihilates all terms since Py(u) does not occur. Hence,

B = PL,L;'(1 — P)L,L;'L, = 0. (6.4.104)

The computation of C and DA follow similarly.
One finds that

C= ai;z [U’(y) + (%][U’(y) + (%J (6.4.105)

and
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_ 9l 919 [y 9
DA = — ay[u (» + ay] ay[U(y) + ay] (6.4.106)
so that
c+pa=2 U(y) [U’(y) + i] (6.4.107)
R 3 4.

and (6.4.101) is equivalent to the differential equation

g—f =y (%[1 + )] [U’(y)ﬁ + g—ﬂ (6.4.108)

with the initial condition

limp(y, 1) = |1 — 7 %[U'(y) + a"—y]] 53, 0) . (6.4.109)

This alteration of the initial condition is a reflection of a ‘“layer”” phenomenon.
Equation (6.4.108) is valid for ¢ > y~! and is known as the corrected Smoluchowski
equation.

The exact solution would take account of the behaviour in the timeup to t ~ y~!
in which terms like exp (—yt) occur. Graphically, the situation is as in Fig. 6.1. the
changed initial condition accounts for the effect of the initial layer near t ~ y~'.

plyt)

Fig. 6.1 Formation of a layer at a boundary. The exact
solution (——) changes rapidly near the boundary on
the left. The approximation (------ ) is good except near
the boundary. The appropriate boundary condition for
the approximation is thus given by the smaller value,
where the dashed line meets the boundary

(c) Boundary Conditions

The higher order implementation of boundary conditions cannot be carried out by
the methods of this section, since a rapidly varying layer occurs in the variable x
near the boundary, and the assumption that the operator d/dy is bounded becomes
unjustified. Significant progress has been made by Titrulaer and co-workers
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[6.10—12]). Suppose the boundary is at y =0, then we can substitute z = yy, v =yt
into the Kramers equation (6.4.19) to obtain

O 19 (,+2) .2
ot |ou \“" ou) Yoz
so that the zero order problem is the solution of that part of the equation
independent of y: to this order the potential is irrelevant. Only the stationary

solution of (6.4.110) has so far been amenable to treatment. It can be shown that
the stationary solution to the y = oo limit of (6.4.110) can be written in the form

oP

u (6.4.110)

1
P+ 7 U'(z/y)

P(uz)=wh(u z)+diwu,z)+ Y, dw.(u, z) 6.4.111)
n=1
where
vo(u, 2) =(2m)" "2 exp (— 5 u?) (6.4.112)
wo(u, 2) =2 1)~V (z — u) exp (— 3 u?) (6.4.113)

and the y, (u, z) are certain complicated functions related to Hermite polynomials.
The problem of determining the coefficients dj is not straightforward, and the
reader is referred to [6.12] for a treatment. It is found that the solution has an
infinite derivative at z = 0, and for small z is of the form a + bz!/2 .

£}
6.5 White Noise Process as a Limit of Nonwhite Process

The relationship between real noise and white noise has been mentioned previously
in Sects.1.4.4, 4.1. We are interested in a limit of a differential equation

X _ o) + b)) (6.5.1)

where a,(¢) is a stochastic source with some nonzero correlation time. We will show
that if ay(¢) is a Markov process, then in the limit that it becomes a delta correlated
process, the differential equation becomes a Stratonovich stochastic differential
equation with the same coefficients, that is, it becomes

(S) dx = a(x)dt + b(x)dW(t) (6.5.2)
which is equivalent to the Ito equation
dx = [a(x) + $b(x)b'(x)]dt + b(x)dW(t) . (6.5.3)

To achieve the limit of a delta correlated Markov process, we must take the large
y limit of

ay(t) = ya(y*t), (6.5.4)
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where a(7) is a stationary stochastic process with

{a(r)y =0 (6.5.5)

{a(D)a(0)), = g(7) . (6.5.6)
Then,

Cao(t)) =0

ao(N)ao(0)), = y*g(¥*1) . (6.5.7)

In the limit of infinite p, the correlation function becomes a delta function. More
precisely, suppose

oo

[ g(t)dr =1 (6.5.8)

—o0

and
_]° 7 g(r)de = =, (6.5.9)

defines the correlation time of the process a(t). [If g(7) is exponential, then 7. as
defined in (6.5.9) requires that

g(r) o< exp (—1/7.)

which agrees with the usage in Sects.1.4.4, 3.7.1.]
Then clearly, the correlation time of ay(7) is 7./y?, which becomes zero as y — oo;
further,

lim {ao(t)ao(0)), =0 (¢t #0). (6.5.10)
Yoo

But at all stages,

T Caao0)ydt = [ g(x)dr = 1 6.5.11)
so that we can write
lim Cag(t)ac(0)), = d(z) . (6.5.12)

Therefore, the limit y — oo of ay(¢) does correspond to a normalised white noise
limit. The higher-order correlation functions might be thought to be important too,
but this turns out not to be the case.

We will give a demonstration in the case where a(7) is a Markov diffusion pro-
cess whose Fokker-Planck equation is



212 6. Approximation Methods for Diffusion Processes
) 0 1 92
_!c;(ta) = —3a [A(a)p(a)] + 7 o [B(a)p(a)] - (6.5.13)

This means that the FPE for the pair (x, @) is

P2 _ (2L, + 9L, + Liptx, @ (6.5.14)
with

L= 2 4@+ 5 2 B

L, = —(,Eb(x) a (6.5.15)

L,=— —aa;a(x) .

The asymptotic analysis now proceeds similarly to that used in Sects.6.4.1, 6.4.3,
with a slight modification to take account of the operator L;. Analogously to Sect.
6.4.1, we define a projector P on the space of functions of x and a by

(Pf)(x, a) = pJa) | daf(x, a), (6.5.16)
where py(a) is the solution of
Lp(a)=0. (6.5.17)

We assume that in the stationary distribution of a, the mean {(a), is zero. This
means that the projection operator P satisfies the essential condition

PL,P=0. (6.5.18)
Since
(PL,Pf) (x, @) = py(a) | de [— (% b(x)ap,(a)] [ do/f(x,
= —py(a){a), a% b(x) [ daf(x,a’) = 0. (6.5.19)
Also, it is obvious that
PL, = L,P (6.5.20)

and, as before,

PL,=LP=0. (6.5.21)
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Defining, as before
v=Pp (6.5.22)
w=(—Pp (6.5.23)

and using the symbols ¥, w for the corresponding Laplace transforms, we find

s %(s)= P(y’L, + yL, + Ly)p(s) + »(0) (6.5.24)
= yPL,[Pp(s) + (1 — P)p(s)] + LsP p(s) + v(0)
so that
s 9(s) = yPL,w(s) + Lsi(s) + v(0) (6.5.25)

and similarly,

s w(s) = [y’L, + y(1 — P)L; + Li]w(s) + yL;9(s) + w(0) (6.5.26)

which differ from (6.4.47) only by the existence of the L,(s) term in (6.5.25) and
Lsw in (6.5.26). We again assume w(0) = 0, which means that a(t) is a stationary
Markov process, so that

59 (s) = Lyd(s) — yPLy[—s + y’L, + (1 — P)L, + Ls]™'yL;(s) + v(0). (6.5.27)

Now the limit y — oo gives

s9(s) = (L3 — PL,L7'L,)i(s) + v(0) . (6.5.28)

We now compute PL,L;'L,5. We write

(s) = p(x)py(a) (6.5.29)
PL,LT'L,% = py(a) j' do’ [— aa; b(x)a’] Li! [— éa.—x b(x)a'] p(a)p(x). (6.5.30)
We now need to evaluate

_|' daaLi'ep(a) = — D (6.5.31)

and to do this we need a convenient expression for L7!. Consider
[exp (Lyt)dt' = Li'exp (L,t) — L (6.5.32)
0

and using (6.4.29)
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[exp(L,t)dt = —L7(1 — P).
0

Since, by assumption,
Pap(a) = p,(a) [ dd'ap(a’) = p('){a), = O
we have

D= [daa ]5 exp (L,t)apy(a) dt

We note that
exp (L,t)apy(a)
is the solution of the Fokker-Planck equation
o.f=Lf
with initial condition
f(a,0) = apy(a).
Hence, -
exp (Lit)ap,(a) = [ da'p(a, t|, 0)a’p (')

and substituting in (6.5.35), we find
D = oj:dt [da da’ ad'p(d, t| @, O)p,(a) ,
0

ie.,

D = [ dt (a(0)aO),

and from (6.5.8) and the symmetry of the correlation function,
D=1)2.
Using (6.5.42) as the value of D, we find
— PLL'Lg = 1 p(a) 2 [b(x) 9 b(x)p(x)]
2 ox dax

so that the differential equation corresponding to (6.5.28) for

(6.5.33)

(6.5.34)

(6.5.35)

(6.5.36)

(6.5.37)

(6.5.38)

(6.5.39)

(6.5.40)

(6.5.41)

(6.5.42)

(6.5.43)
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p(x, t) = _[ da p(x, @) (6.5.44)
is
P — B ap) + 5 2 b 2 500 p(e). (6.5.45)

This is, of course, the FPE in the Stratonovich form which corresponds to

(S) dx = a(x)dt + b(x)dW(t) (6.5.46)
or which has the Ito qum

dx = [a(x) + 3b'(x)b(x))dt + b(x)dW(t), (6.5.47)

as originally asserted.
6.5.1 Generality of the Result

A glance at the proof shows that all we needed was for a(¢) to form a stationary
Markov process with zero mean and with an evolution equation of the form

‘9—’5(;—"—) = Lp(a), (6.5.48)

where L, is a linear operator. This is possible for any kind of Markov process,
in particular, for example, the random telegraph process in which a(t) takes on
values +a. In the limit y — oo, the result is still a Fokker-Planck equation. This is
a reflection of the central limit theorem. For, the effective Gaussian white noise is
made up of the sum of many individual components, as y — oo, and the net
result is still effectively Gaussian. In fact, Papanicolaou and Kohler [6.7] have rigoro-
usly shown that the result is valid even if a(t) is a non-Markov process, provided it
is “strongly mixing” which, loosely speaking, means that all its correlation func-
tions decay rapidly for large time differences.

6.5.2 More General Fluctuation Equations

Notice that in (6.5.1), instead of defining a,(¢) as simply ya(t/y*), we can use the
more general form

ao(t, x) = yylx, a(t/y?)] (6.5.49)

and now consider only b(x) = 1, since all x dependence can be included in y.
We assume that

[ da y(x, a)p(a) = 0 (6.5.50)

in analogy to the previous assumotion (ad>. = 0.
[
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Then D becomes x dependent, and we have to use

D(x) = [ dt Culx, a(Olylx, aO)) (6.5.51)
and

E(x) = ]; dt <gl; Lx, a()wx, a(O)]> (6.5.52)

and the Fokker-Planck equation becomes

g_f . (% [{a(x) + E)} 5] + :—xz[D(x)ﬁ] : (6.5.53)

In this form we have agreement with the form derived by Stratonovich [Ref. 6.3,
Eq.(4.4.39)).

6.5.3 Time Nonhomogeneous Systems
If instead of (6.5.1) we have

% = a(x, t) + b(x, t)ay(t), ) (6.5.54)

the Laplace transform method cannot be used simply. We can evade this difficulty
by the following trick. Introduce the extra variable 7 so that the equations become

dx = [a(x, T) + yb(x, T)a]dt (6.5.55)
da = y*A(a)dt + y~/B(a) dW(t) (6.5.56)
dr=dt. (6.5.57)

The final equation constrains ¢ to be the same as 7, but the system now forms a
homogeneous Markov process in the variables (x, @, 7). Indeed, any nonhomo-
geneous Markov process can be written as a homogeneous Markov process using
this trick.

The Fokker-Planck equation is now

g—f = y2L, + yL, + L, (6.5.58)

with

0 1 9
L= — 5 4@+ 5 5 B@) (6.5.59)
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ad

Lz = — a—xb(x, T)a (6560)
o @

Ly = — a_'l' — aa(x, ‘L') . (6561)

Using the same procedure as before, we obtain

7 0 1 4d
a——f = [—- b—r — —aa;a(x, T) + _2" a_xb(x9 T) aixb(xﬁ T)]p (65'62)

which yields
dv = dt (6.5.63)

so that we have, after eliminating 7 in terms of ¢,

p 1
gi: = [— (%a(x, 1)+ —2—8%b(x, t)a%b(x, t)]p (6.5.64)

in exact analogy to (6.5.45).

6.5.4 Effect of Time Dependence in L,

Suppose, in addition, that 4 and B depend on time as well, so that

i) 1 92
L =— 8_aA(a’ 7) + 3 5a B(a, 7). (6.5.65)

In this case, we find P is a function of t and hence does not commute with L,. Thus,
PL; + L;P . (6.5.66)
Nevertheless, we can take care of this. Defining ¥(s) and #w(s) as before, we have
s 9(s) = P(yL, + L;)W(s) + PL5i(s) + v(0) (6.5.67)

sw(s) = [y’L, 4+ y(1 — P)L, + (1 — P)L;]w(s) + yL,9(s) + (1 — P)L5i(s)
(6.5.68)
so that

s %(s) = PLyi(s) + P(yL, + Ly)ls — y*L, — »(1 — P)L, — (1 — P)L]™
X [yL; + (1 — P)Ls]i(s) + v(0) . (6.5.69)

We see that because L, is multiplied by y and L, is not, we get in the limit of large y

el ~ (PT . — PI.T-1T i<} = »(M (6.5.70)
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In this case we will not assume that we can normalise the autocorrelation function
to a constant. The term — PL,L7'L, gives

0 d r:

a_xb(x: T)é_xb(x’ ‘l’) _(I; dt<ar(t)at(0)> s (6571)
where by a.(f) we mean the random variable whose FPE is
o _[2 12
o = [a_a Ala, 1) + 5 55 Bla, r)]p- (6.5.72)

Thus, the limit y — oo effectively makes the random motion of « infinitely faster
than the motion due to the time dependence of « arising from the time dependence
of 4 and B. Defining

D7) = | dt¢a(t)a0)) , (6.5.73)

we find, by eliminating t as before,

g—ltﬁ=[—¢%a(x, t)+D(t)¢:%b(x’t){%vb(x’ t)]ﬁ (6574)

6.6 Adiabatic Elimination of ‘F ast Variables: The General Case

We now want to consider the general case of two variables x and a which are
coupled together in such a way that each affects the other. This is now a problem
analogous to the derivation of the Smoluchowski equation with nonvanishing
V'(x), whereas the previous section was a generalization of the same equation
with V’(x) set equal to zero.

The most general problem of this kind would be so complex and unwieldy as to
be incomprehensible. In order to introduce the concepts involved, we will first con-
sider an example of a linear chemical system and then develop a generalised theory.

6.6.1 Example: Elimination of Short-Lived Chemical Intermediates

We consider the example of a chemically reacting system

y k
Xe=Y=—14 (6.6.1)
k Y

where X and Y are chemical species whose quantities vary, but 4 is by some means
held fixed. The deterministic rate equations for this system are

“%‘ x4y (6.6.22)
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d
d—ty — —2yy+x+a. (6.6.2b)

Here x, y, a, are the concentrations of X, Y, A. The rate constants have been cho-
sen so that k = 1, for simplicity.

The physical situation is often that Y is a very short-lived intermediate state
which can decay to X or 4, with time constant p~!. Thus, the limit of large y in
which the short-lived intermediate Y becomes even more short lived, and its
concentration negligible, is of interest. This results in the situation where we solve
(6.6.2b) with dy/dt = 0 so that

y=(x+a)2y, (6.6.3)

and substitute this in (6.6.2a) to get

=55 (6.6.4)

The stochastic analogue of this procedure is complicated by the fact that the white
noises to be added to (6.6.2) are correlated, and the stationary distribution of y
depends on y. More precisely, the stochastic differential equations corresponding
to (6.3.2) are usually chosen to be (Sect.7.6.1)

dx = (—x + yy)dt + eB,,dW,(t) + eB,,dW (1) (6.6.5)
dy = (—2yy + x + a)dt + €B,,dW,(t) + eB,,dW,(t),

where the matrix B satisfies

(6.6.6)

2a —2a
e 2

—2a 4a |’

Here ¢ is a parameter, which is essentially the square root of the inverse volume of
the reacting system and is usually small, though we shall not make use of this fact
in what follows.

We wish to eliminate the variable y, whose mean value would be given by (6.6.3)
and becomes vanishingly small in the limit. It is only possible to apply the ideas we
have been developing if the variable being eliminated has a distribution function
in the stationary state which is independent of . We will thus have to define a
new variable as a function of y and x which possesses this desirable property.

The Fokker-Planck equation corresponding to (6.6.5) is

o_[9  _ O o029
ot ‘[ax(" W+ gaca 26x8ysa
+ Q(Zyy — x —a) + 2¢%a ﬁ]p (6.6.7)
oy 0y’ ]

It seems reasonable to define a new variable z by
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z=2yy—x—a (6.6.8)

which is proportional to the difference between y and its stationary value. Thus, we
formally define a pair of new variables (x,, z) by

X, =X X = Xx, (6.6.9)
z =2)y—x—a y=(z+ x, + a)2y

so that we can transform the FPE using

9_0 30
dx 0Ox, 0z (6.6.10)
4,0
oy~ 73z
to obtain
op_ [0 [xmn—a z 2, 9% 0 hay aua
at_[ax,{ 2 2]+8“az+ax,a( 2e'a — dye'a)
7} xX—a 6 z
+a—z(2yz——2—+ z) a22(882ya~+—z-:a!+4y.sa)] (6.6.11)

The limit of y — oo does not yet give a Fokker-Planck operator in z, which is simply
proportional to a fixed operator: we see that the drift and diffusion terms for z
are proportional to y and y?, respectively.

However, the substitution

a=zy i (6.6.12)

changes this. In terms of a, the drift and diffusion coefficients become proportional
to y and we can see (now writing x instead of x,)

W

= [yL, + y'?L.(y) + Lslp (6.6.13)
in which
_,0 2, 0%
Li=25-a+ 85 (6.6.14)

09? 0 [x —
Ly(y) = [ 482(18i — %a] + 4y g 2aa__ v aa Iix - a]

2
+ {—)"”2 a%{a — y~2¢%a 9

02
3/252
%0 + y73%%a ] (6.6.15)

da?
az

L oaxt’

8(x—a

== (5 ) +ea L (6.6.16)
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Notice that L,(y) has a large y limit given by the first term of the first line of
(6.6.15). The only important property of L, is that PL,P = 0. Defining P as usual

Pf(x, a) = py(a) [ do’' f(x, &) (6.6.17)
where p,(a) is the stationary solution for L,, we see that for any operator beginning

with 0/da [such as the y dependent part of L,(y)] we have

P;,a;f = pia) [ do’ %f(x, a)=0, (6.6.18)

provided we can drop boundary terms. Hence, the y dependent part of L,(y) satis-
fies PL,P = 0. Further, it is clear from (6.6.14) that {(a), = 0, so we find that the
first, y independent part, also satisfies this condition. Thus

PL,())P =0. (6.6.19)

Nevertheless, it is worth commenting that the y dependent part of L,(y) contains
terms which look more appropriate to L,, that is, terms not involving any x deriva-
tives. However, by moving these terms into L,, we arrange for L, to be independent
of . Thus, P is independent of y and the limits are clearer.

The procedure is now quite straightforward. Defining, as usual

Pp(s) = 9(s) (6.6.20)
(1 — P)p(s) = w(s)

and assuming, as usual, w(0) = 0, we find

s 9(s) = P[yL, + y'"*Ly(y) + Ls] [9(s) + W(s)] + v(0) (6.6.21)
and using
PL,=LP=0
PL,P =0 (6.6.22)
PL,=L,P,
we obtain
s B(s) = Py'2L,(y)w(s) + L;i(s) + v(0) (6.6.23)

and similarly,

sW(s) = [yLy + y"'*(1 — P)La(y) + Ls]w(s) + y'"*La(y)(s) (6.6.24)

so that
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s9(s) = {Ls + yPL (s — yL, — y"*(1 — P)Ly(y) — L3]7'L,} (s)
+ (0) . (6.6.25)

Now taking the large y limit, we get

si(s) = (Ls — PL,L{'L,)u(s) + »(0), (6.6.26)
where
L= lim L,(y) = aa;(— 482"3371 - %a) ' (6.6.27)

Equation (6.6.26) is of exactly the same form as (6.5.28) and indeed the formal
derivation from (6.6.7) is almost identical. The evaluation of PL,L;'L, is, however,
slightly different because of the existence of terms involving 8/de. Firstly, notice that
since P d/da = 0, we can write

—PLLLy = —p(@) [ do (— 4o ) it 2 (—4ca 2, — 4e') p@)p()

(6.6.28)
and from the definition of p,(a) as satisfying L, p(a) = 0, we see from (6.6.14) that
0 2 ¥
5aP(@) = —ap(@)/4c’a (6.6.29)
and hence that
- 1 az Py -1t ’
—PL,L;i'Lyy = Zp,(a) e I do'a’ L7'a'p(a')p(x) (6.6.30)

2@ D T at (att)ao),, (6.631)

where we have used the reasoning given in Sect.6.5 to write the answer in terms
of the correlation function. Here, L, is the generator of an Ornstein-Uhlenbeck
process (Sect 3.8.4) with k = 2, D = 16¢%a, so that from (3.8.2),

~PLLLw = — 5 pi@) 2% acta ] dr e~ (6.6.32)
0
~_1 sz(x)
- 2 ga ox? ps( )

Hence, from (6.6.26), the effective Fokker-Planck equation is

p 8 x— 1, 8%
a—f — a_)_cx 5 9 p(x) + —ezag)p , (6.6.33)
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Comments
i) This is exactly the equation expected from the reaction

k/2
X—4 (6.6.34)
k/2

(with k = 1) (Sect.7.5.3). It is expected because general principles tell us that the
stationary variance of the concentration fluctuations is given by

var {x(t)}, = e¥{x), . (6.6.35)

1)) Notice that the net effect of the adiabatic elimination is to reduce the coefficient
of 92/0x?, a result of the correlation between the noise terms in x and y in the ori-
ginal equations.

iii) This result differs from the usual adiabatic elimination in that the noise term
in the eliminated variable is important. There are cases where this is not so; they
will be treated shortly.

6.6.2 Adiabatic Elimination in Haken’s Model
Haken has introduced a simple model for demonstrating adiabatic elimination
[Ref. 6.1, Sect.7.2]. The deterministic version of the model is a pair of coupled
equations which may be written
X = —&x — axa (6.6.36)
a = —ka + bx*. (6.6.37)

One assumes that if k is sufficiently large, we may, as before, replace a by the
stationary solution (6.6.37) in terms of x to obtain

(6.6.38)

¢ = —ex — "7” X (6.6.39)

The essential aim of the model is to obtain the cubic form on the right-hand side of
(6.6.39).

In making the transition to a stochastic system, we find that there are various
possibilities available. The usual condition for the validity of adiabatic elimination
is

e<k. (6.6.40)
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In a stochastic version, all other parameters come into play as well, and the condi-
tion (6.6.40) is, in fact, able to be realised in at least three distinct ways with
characteristically different answers.

Let us write stochastic versions of (6.6.36, 37):

dx = —(ex + axe)dt + C dW,(t)

(6.6.41)
da = (—ka + bx¥)dt + D dW,(t)
and we assume here, for simplicity, that C and D are constants and W,(t) and W,(¢)
are independent of each other.
The Fokker-Planck equation is

F) 0?
Po[Ze 1o Rt i D]y @60

We wish to eliminate a. It is convenient to define a new variable 8 by

fema—Ly (6.6.43)

K

so that, for fixed x, the quantity § has zero mean. In terms of this variable, we can
write a FPE:

;p (L3 + L3 + L3)p (6.6.44)
D* 3
a= ﬁ"ﬂ T2 (6.6.45)
0 2bx @ ab
0= — _ ao 5
L3 = 5papx aﬁ( 2 x +axﬂ)
bx o? 9% bx\ . 2b*x2C* 9
- (x axop T axap x) T (6.6.46)
2 N2
B= [ai (ex e 3) C? %2] (6.6.47)

In terms of these variables, the limit ¢ — 0 is not interesting since we simply get the
same system with ¢ = 0. No elimination is possible since L, is not multiplied by a
large parameter.

In order for the limit ¢ — O to have the meaning deterministically that (6.6.39)
is a valid limiting form, there must exist an A4 such that

— =¢A, as ¢—0. (6.6.48)
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For this limit to be recognisable deterministically, it must not be swamped by
noise so one must also have

CZ
5= eB as ¢—0 (6.6.49)

which means, as ¢ — 0

9 ) i
LS —»8[ax(x + Ax*) + Baxz] . (6.6.50)

However, there are two distinct possibilities for L3. In order for L} to be inde-
pendent of &, we must have x independent of &, which is reasonable. Thus, the
limit (6.6.48) must be achieved by the product ab being proportional to &. We con-
sider various possibilities.

a) The Silent Slave: a Proportional to ¢
We assume we can write

a=¢d. (6.6.51)

We see that LY is independent of ¢ while L and LJ are proportional to &. If we
rescale time by

T = et (6.6.52)
then
1

2 (fr+ L+ L), (6.6.53)
where

Ll = L(l)

L, = Lye (6.6.54)

L3 = Lg/s .

Clearly, the usual elimination procedure gives to lowest order

2
P L= [a% (x + 4x°) + B aa—xz] b (6.6.55)

since L, does not become infinite as ¢ — 0.

This corresponds exactly to eliminating a adiabatically, ignoring the fluctuations
in @ and simply setting the deterministic value in the x equation. I call it the ‘silent
slave’, since (in Haken’s terminology) « is slaved by x and makes no contribution
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to the noise in the x equation. This is the usual form of slaving, as considered by
Haken.

b) The Noisy Slave: a Proportional to g!/2
If we alternatively assume that both @ and b are proportional to €'/2, we can write

a = @g''? (6.6.56)
b= b2,

where
db=xA. (6.6.57)

L stays constant, LJ is proportional to ¢ and

LY = &2L, + higher order terms in ¢, (6.6.58)
where
L—apdx (6.6.59)
2 =dfz x. .6.

Thus, the limiting equation is
D o (Ly— PLLT'L)p : (6.6.60)

The term PL,L;'L, can be worked out as previously; we find

2
— PLLiL, = 522%%"%)‘ (6.6.61)
)
p_ [0 a*pn? 5 a_z G2D%x?
= [a_x Hl -5 ]+ Ax |+ o5 B+ 5 ]] p. (6.6.62)

I call this the “noisy slave”, since the slave makes his presence felt in the final
equation by adding noise (and affecting the drift, though this appears only in the Ito
form as written; as a Stratonovich form, there would be no extra drift).

¢) The General Case

Because we assume ab < ¢, it can be seen that the second two terms in (6.6.46) are
always proportional to &?, where p > 1, and hence are negligible (provided b is
bounded). Thus, the only term of significance in L3 is the first. Then it follows that if

r~

a=¢a,
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we have the following possibilities:

r > %: no effect from L,: limiting equation is (6.6.55),
r = %: limiting equation is (6.6.62)—a noisy slave,
r < }: the term PL,L;'L, becomes of order &~! — oo and is dominant.

The equation is asymptotically (for r < %)

#  ,....D (3 0
al: ¥ -1g? 2x2(ax = )p (6.6.63)

These are quite distinct differences, all of which can be incorporated in the one
formula, namely, in general

o _[2 y4 Epyapl? a]
5 [(x+Ax)+ B+ 6@ T x 2 x (b (6.6.64)

In applying adiabatic elimination techniques, in general, one simply must take par-
ticular care to ensure that the correct dependence on small parameters of all
constants in the system has been taken.

6.6.3 Adiabatic Elimination of Fast Variables: A Nonlinear Case

We want to consider the general case of two variables x and « which are coupled
together in such a way that each affects the other, though the time scale of « is
considerably faster than that of x.

Let us consider a system described by a pair of stochastic differential equations:

dx = [a(x) + b(x)aldt + c(x)dWy(1) (6.6.65)
da = y[A(a) — f(x)ldt + y~/2B(a) AWa(t) . (6.6.66)

If we naively follow the reasoning of Sect.6.4, we immediately meet trouble. For in
this limit, one would put

(@) — fx) = — 2‘5;?"—”—‘;#) (6.6.67)

on the assumption that for large a, (6.6.66) is always such that da/dt = 0. But then
to solve (6.6.67) for « in terms x yields, in general, some complicated nonlinear
function of x and dW,(t)/dt whose behaviour is inscrutable. However, if B(a) is zero,
then we can define uy(x) to be

Alug(x)] = f(x) (6.6.68)

and substitute in (6.6.65) to obtain
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dx = [a(x) + b(x)ug(x)]dt + c(x)dW,(¢) . (6.6.69)

We shall devise a somewhat better procedure based on our previous methodology
which can also take the effect of fluctuations in (6.6.66) into account.
The Fokker-Planck equation equivalent to (6.6.65, 66) is

op

3= (PL, + L, + Ly)p, (6.6.70)
where
L= 21/ — A@)] + 2 B@) (6.6.71)
' Oa 0a* o

and L, and L, are chosen with hindsight in order for the requirement PL,P = 0
to be satisfied. Firstly, we choose P, as usual, to be the projector into the null space
of L,. We write p,(a) for the stationary solution i.e., the solution of

Lipa) =0 (6.6.72)

so that p.(a) explicitly depends on x, because L, explicitly depends on x through the
function f(x). The projector P is defined by

(PF) (x, @) = p,(a) [ do’ F(x, a') (6.6.73)

for any function F(x,a). N
We now define the function u(x) as

u(x) = [ da ap,(a) = (@), . (6.6.74)

Then we define
L—— a% [b(x)[a — ()] (6.6.75)

L= — % la(x) + b(x)u(x)] + % ;722 [e(x)P? (6.6.76)

so that the term {8/dx} b(x)u(x) cancels when these are added. Thus (6.6.70) is the
correct FPE corresponding to (6.6.65, 66).
Now we have

PL,PF = — p(a) [ da’ a% Bl — W) pe) [ de” F(x, @) (6.6.77)
—0
since [ ap,(a)da = u(x) .

It is of course true that
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PL,=LP=0 (6.6.78)
but
PL, + L,P. (6.6.79)
We now carry out the normal procedure. Writing, as usual,

P p(s) = o(s)

(6.6.80)
(I — P)p(s) = w(s)
and assuming w(0) = 0, we find

$9() = P(Ly + Loyi(s) + PLs¥(s) + (0)
s #(s) = Ly + (1 — P)L, + (1 — P)LyJ#(s) + Lyi(s) + (I — P)Lyi(s) (6.6.81)

so that

$ 9(s) = PL50(s) + P(Ly + Ly)ls — y*L, — (1 — P)L, — (1 — P)L,]™
X [L, + (1 — P)LyJi(s) + v(0) . (6.6.82)

To second order we have simply

s9(s) = {(PL; — y7*P(Ly + Ly)L7'[Lz + (1 — P)L;]}9(s) + v(0). | (6.6.83)

The term PL,%(s) is the most important term and yields the deterministic adiabatic
elimination result. Writing

v(1) = pa)p(x),

we find

PLy(0) = pu(@) | de’ |~ 2 1a(x) + B + 5 5 )] (@ (3) (6:6.84)

and since
[dapfa)=1,

PLyu(t) = pia) |- 2 ao) + b0 + 3 2 [} 2o (6.6.85)

so the lowest-order differential equation is

% == é@,‘c la(x) + b(x)u(x)] p(x) + % 337:2 c(x)*p(x) (6.6.86)
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which is equivalent to the stochastic differential equation

dx = [a(x) + b(xX)u(x)ldt + c(x)dW(t) . (6.6.87)

To this order, the equation of motion contains no fluctuating term whose origin
is in the equation for @. However, the effect of completely neglecting fluctuations is
given by (6.6.69) which is very similar to (6.6.87) but has uy(x) instead of u(x). While
it is expected that the average value of a in the stationary state would be similar to
uy(x), it is not the same, and the similarity would only be close when the noise term
B(a) was small.

Second-Order Corrections

It is possible to evaluate (6.6.83) to order y~2. At first glance, the occurrence of 2nd

derivatives in L, would seem to indicate that to this order, 4th derivatives occur

since L, occurs twice. However, we can show that the fourth-order terms vanish.
Consider the expression

P(L, + L)L7'[L, + (1 — P)L;J(s) . (6.6.88)
We know
) Pi(s) = 9(s) (6.6.89)

ii) (1 — P)L,Pi(s) = L,Pi(s),

where we have used PL,P = 0.
Thus, (6.6.88) becomes

P(L; + Ly)L7'(1 — P)(L, + Ly)Po(s) = P{PL, + [P, L] + L;P}
x (1 — P)L;'(1 — P){L,P + [Ls, P] + PL;}#(s) (6.6.90)

where the commutator [A, B] is defined by
[A, B] = AB — BA . (6.6.91)

We have noted that L;! commutes with (1 — P) and used (I — P)* = (1 — P) in
(6.6.90) to insert another (1 — P) before L7'. We have also inserted another P
in front of the whole expression, since P? = P. Using now

P(1 — P)= (1 — P)P =0,
(6.6.90) becomes P{PL, + [P, Ly} L;* (1 — P){L; + [Ls, P]}#(s) . (6.6.92)

We will now compute [P, L]:

(PLs /), @) = ple) [ 2 ax) + bCxJu()

+ 4 aa_ c(x)]z} [ f(x, @) da’ (6.6.93)
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and

(LsP)f(x, @) = 1= = ]a(X) + b(x)u(x)]

+ 5 10T pufe) | delfi, @) (6.6.94)

Subtracting these, and defining,

@ =2 ‘(a)/px(a) (6.6.95)
sx(@) = i p *(a) p,( a). (6.6.96)
One finds

(P, Ls]f) (x, a) = ri(@)[a(x) + b(x)u(x)]Pf(x, @)
— 3s.(@)e(x)*P f(x, @) — x(a)P L x, @)l (6.6.97)

The last term can be simplified even further since we are only interested in the case
where f(x, @) is v, i.e.,

Sfix, @) = pa)p(x) . (6.6.98)
Then,

P (%c(x)sz(a)ﬁ(x) (6.6.99)

= p@) aa} c(x)? | da'p.(a')p(x) (6.6.100)

= p.(a) a% c(x)2p(x) . (6.6.101)

We can further show that

P[P, L;]=0. (6.6.102)
For since
J' dap.a) =1, (6.6.103)

it follows that

f da r(a)p.(a) = j' da s (a)p(a) =0 (6.6.104)
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which is sufficient to demonstrate (6.6.102). Hence, instead of (6.6.92) we may write
(6.6.92) in the form

PL,L7'{L, + [Ls, P]}#(s) (6.6.105)
and
[Ls, PJi(s) = —pu(a) {ro(@)la(x) + b(x)u(x)] — }s.(a)c(x)?} p(x)

+ Pu@ra) [P0 (6:6.106)

6.6.4 An Example with Arbitrary Nonlinear Coupling
We consider the pair of equations

dx = yb(x)adt (6.6.107)
da = —y*A(x, a, Y)dt + yv/2B(x, a, y) dW(t)

and assume the existence of the following limits and asymptotic expansions

A(x, @,7) ~ 3 A,(x, @)y
"o (6.6.108)

B(x9 a, 7) -~ go Bn(x9 a)y"‘ s

These expansions imply that there is an asymptotic stationary distribution of a
at fixed x given by

P, x) = lim p(a, x, 7) (6.6.109)

Ps(a, x) oc Bo(x, @)~" exp {[ da[Aq(x, @)/By(x, )]} . (6.6.110)
We assume that 4,(x, @) and By(x, a) are such that

{a(x)), = [ da ap(a, x) =0 (6.6.111)
so that we deduce from (6.6.108) that, for finite y

a(x, 7)), = [ da apa, x, y) ~ ao(x)y™* (6.6.112)

where a,(x) can be determined from (6.6.108).
We define the new variables

B=a—Lax

Y (6.6.113)

xl=x.
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In terms of which the Fokker-Planck operator becomes (the Jacobian is a con-
stant, as usual) on changing x, back to x

L=— a% ao(x)b(x)
- ﬂib()+i (ae)b) 2 + 2 Bag()b(x)
)’ ax X a, X)X X aﬂ aﬂ ag

ABA ) + B 5

(6.6.114)
and, by using the asymptotic expansions (6.6.108), we can write this as
L= L+ yLo) + 7L, (66.115)
with
L= — (%ao(x)b(x) (6.6.116)
L =£A(B x)-l—iB(B X) (6.6.117)
1 aﬂ o\/M> aﬂz o\ /M b
L(y) = L, + O(y™") (6.6.118)
d 94.(B, x)
B350 — 55 8D o) + 4,80
0By(B, x)
N R CE (6.6.119)

We note that L, and L, do not commute, but, as in Sect. 6.5.4, this does not affect
the limiting result,

gf (Ly — PLLLy)p . (6.6.120)

The evaluation of the PL,L;'L, term is straightforward, but messy. We note
that the terms involving 8/ vanish after being operated on by P. From the explicit
form of p,(a, x) one can define G(B, x) by

aﬂ[[aAO(ﬂ 2 04() + 418, X)]p, 8, x)]

8By(p, x) B
+ [ [2552 2 a) + BB D) || b 9= GB B (661

and one finds that
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PLLL'Lp = [ 5 0D() 5 b(x) + 2 b)EG) 5 (66.122)
with
DG) = [dtCBe), BO)1x> (6.6.123)

E(x) = [ di<B(e), G(B, )|

where {...|x) indicates an average over py(f, x). This is a rather strong adiabatic
elimination result, in which an arbitrary nonlinear elimination can be handled and
a finite resulting noise dealt with. The calculation is simpler than that in the pre-
vious section, since the terms involving L, are of lower order here than those
involving L,.
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It is very often the case that in systems involving numbers of particles, or individual
objects (animals, bacteria, etc) that a description in terms of a jump process can be
very plausibly made. In such cases we find, as first mentioned in Sect. 1.1, that in an
appropriate limit macroscopic deterministic laws of motion arise, about which the
random nature of the process generates a fluctuating part. However the determinis-
tic motion and the fluctuations arise directly out of the same description in terms
of individual jumps, or transitions. In this respect, a description in terms of a jump
process (and its corresponding master equation) is very satisfactory.

In contrast, we could model such a system approximately in terms of stochastic
differential equations, in which the deterministic motion and the fluctuations have a
completely independent origin. In such a model this independent description of
fluctuations and deterministic motion is an embarrassment, and fluctuation dissi-
pation arguments are necessary to obtain some information about the fluctuations.
In this respect the master equation approach is a much more complete description.

However the existence of the macroscopic deterministic laws is a very significant
result, and we will show in this chapter that there is often a limit in which the
solution of a master equation can be approximated asymptotically (in terms of a
large parameter 2 describing the system size) by a deterministic part (which is the
solution of a deterministic differential equation), plus a fluctuating part, describa-
ble by a stochastic differential equation, whose coefficients are given by the original
master equation. Such asymptotic expansions have already been noted in Sect.
3.8.3, when we dealt with the Poisson process, a very simple jump process, and
are dealt with in detail in Sect. 7.2.

The result of these expansions is the development of rather simple rules for
writing Fokker-Planck equations equivalent (in an asymptotic approximation) to
master equations, and in fact it is often in practice quite simple to write down the
appropriate approximate Fokker-Planck equation without ever formulating the
master equation itself. There are several different ways of formulating the first-
order approximate Fokker-Planck equation, all of which are equivalent. However,
there is as yet only one way of systematically expanding in powers of 27!, and that
is the system size expansion of van Kampen.

The chapter concludes with an outline of the Poisson representation, a method
devised by the author and co-workers, which, for a class of master equations,
sets up a Fokker-Planck equation exactly equivalent to the master equation. In this
special case, the system size expansion arises as a small noise expansion of the
Poisson representation Fokker-Planck equation.
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7.1 Birth-Death Master Equations— One Variable

The one dimensional prototype of all birth-death systems consists of a population
of individuals X in which the number that can occur is called x, which is a non-
negative integer. We are led to consider the conditional probability P(x, | x’, t') and
its corresponding master equation. The concept of birth and death is usually that
only a finite number of X are created (born) or destroyed (die) in a given event. The
simplest case is when the X are born or die one at a time, with a time independent
probability so that the transition probabilities W(x|x', t) can be written

W(x|x',t) = t*(x')0x xrs1 + t (X0 xr_1 - (7.1.1)
Thus there are two processes,

x—x—+1: t*(x) = transition probability per unit time. (7.1.2)

x—x—1: t~(x) = transition probability per unit time. (7.1.3)
The general master equation (3.5.5) then takes the form

0. P(x, t|x', ')y =t (x — DP(x — L, t|x', ') + t=(x + DP(x + 1, ¢]|x, )
— [t*(x) + t=(xX)]P(x, t| X, t'). (7.1.4)

There are no general methods of golving this equation, except in the time-inde-
pendent situation.

7.1.1 Stationary Solutions

We can write the equation for the stationary solution P,(x) as

0=Jx+1)—J(x) (7.1.5)
with
J(x) = t7(x)Py(x) — t*(x — D)P,(x — 1). (7.1.6)

We now take note of the fact that x is a non-negative integer; we cannot have a
negative number of individuals. This requires

@i) t=(0) =o0: no probability of an individual dying if there are
none present; 7.1.7)
@ii) P(x, t|x",t)=0 forx<Oorx' <O. (7.1.8)

This means that
J(0) = t=(0)P,(0) — t*(—=1)P,(—1) =0. (7.1.9)

We now sum (7.1.5) so
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0=5 U@+ 1= I =@ — IO (7.1.10)
Hence,

Jx) =0 @.1.11)
and thus

P(x) = 5“%(;)—') Pix—1) (7.1.12)
so that

t"z—1)

@) (7.1.13)

P =PO) [T — 5

a) Detailed Balance Interpretation

The condition J(x) = O can be viewed as a detailed balance requirement, in which x
is an even variable. For, it is clear that it is a form of the detailed balance condition
(5.3.74), which takes the form here of

P(x, t|x', 0)Py(x") = P(x', | x, 0)Py(x), (7.1.14)

Setting x’ = x + 1 and taking the limit 1 — 0, and noting that by definition
(3.4.1),

W(x|x',t) =lim P(x, t + t|x', t)/7, (7.1.15)
—0

the necessity of this condition is easily proved.

b) Rate Equations
We notice that the mean of x satisfies

3x(1)y = 9, io xP(x, t|x', t') (7.1.16)
= 2 x[t*(x —DP(x — 1, ¢|x", t') — t*(x)P(x, t| x', t')]
+ ‘Z‘, x{t(x + DP(x+ 1, t|x",t") — t=(x)P(x,t|x', )] (7.1.17)

= 2 [(x + De*(x) — xt*(x) + (x — D~(x)
— xt~(x))P(x, t|x', t'), (7.1.18)

Ly = @O — oD - (7.1.19)
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The corresponding deterministic equation is that which would be obtained by
neglecting fluctuations, i.e.,

Z—f =t*(x) — t7(x). (7.1.20)

Notice that.a stationary state occurs deterministically when

tt(x) =t7(x). (7.1.21)
Corresponding to this, notice that the maximum value of P,(x) occurs when

P(x)/P(x —1) =1, (7.1.22)
which from (7.1.12) corresponds to

tfx— 1) =1t7(x). (7.1.23)

Since the variable x takes on only integral values, for sufficiently large x (7.1.21) and
(7.1.23) are essentially the same.

Thus, the modal value of x, which corresponds to (7.1.23), is the stationary
stochastic analogue of the deterministic steady state which corresponds to (7.1.21).

7.1.2 Example: Chemical Reactio:&_ X—4

. k . . .
We treat the case of a reaction X-—;—l—‘ A in which it is assumed that A4 is a fixed
2

concentration. Thus, we assume
t*(x) = kya (7.1.24)
t=(x) = kyx (7.1.25)

so that the Master equation takes the simple form [in which we abbreviate
P(x, t|x', t') to P(x, t)]

0,.P(x,t) = k,aP(x — 1, 1) + k\(x + DP(x + 1, ¢t) — (kyx + k,@)P(x, t). (7.1.26)

a) Generating Function
To solve the equation, we introduce the generating function (c.f. Sects.1.4.1, 3.8.2)

G(s, 1) = 3} s*P(x, 1) (7.1.27)

so that

0,G(s, t) = kya(s — 1)G(s, t) — k(s — 1)3,G(s, 1) . (7.1.28)
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If we substitute

é(s, t) = G(s, t) exp (—k,aslk,), (7.1.29)
(7.1.28) becomes

0.4(s, 1) = — k(s — 1)0,4(s, 1) . (7.1.30)
The further substitution s — | = e,

#(s, 1) = wl(z, 1)
gives

ow(z, t) + k,0,p(z,t) =0 (7.1.31
whose solution is an arbitrary function of k,# — z. For convenience, write this a:

w(z, t) = Flexp (—k,t + z)] e~*2/%

= F[(s — e k1] g=*2alk

SO

G(s, t) =F[(s— e~ ] exp [(s — Dk,a/k,] . (7.1.5..

Normalisation requires G(1, t) = 1, and hence
FO)=1. (7.1.33)

b) Conditional Probability
The initial condition determines F; this is (setting ¢’ = 0)

P(x,0|N, 0) = 6, » (7.1.34)

which means

G(s, 0) = s¥ = F(s — 1) exp [(s — Dkzalk,] (1.1.35)
so that
k,a _ _
G(s, 1) = exp [k— s— 1)1 —e kl')][l F(s— 1) ek . (7.1.36)

This can now be expanded in a power series in s giving

N! (kza) x=r

kaa kg | € ! kya
s, 113,0) = exp | — R0 — | Sl () g,

X (1 _ e—klr)N+x—2'e—k|rr .
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This very complicated answer is a complete solution to the problem but is of very
little practical use. It is better to work either directly from (7.1.36), the generating
function, or from the equations for mean values.

From the generating function we can compute

x(2)) =0,G(s=1,1)= ]%a(l — e~kir) 4 N ekt (7.1.38)
x(Ox(t) — 1> = 02G(s = 1, 1) = {(x(1))* — N e~ (7.1.39)
var {x(t)} = (N e~k 4 %) (1 —e k), (7.1.40)

¢) Moment Equations
From the differential equation (7.1.28) we have

0,[0:G(s, )] = {nlk.ad7™" — k37 + (s — D[k,a0? — k,07')} G(s, 1) . (7.1.41)

Setting s = 1 and using

0:G(s, 1) | o= = <X(1)"Ds» (7.1.42)
we find
G w1y, = nllsaGelt 13y — Ky GO, (7.1.43)

and these equations form a closed hierarchy. Naturally, the mean and variance solu-
tions correspond to (7.1.38, 40).

d) Autocorrelation Function and Stationary Distribution
As t — oo for any F, we find from (7.1.32, 33)

G(s, t — o0) = exp [ (s — Dkaa/k,] (7.1.44)
corresponding to the Poissonian solution:
P(x) = exp (— kaalk,) (kaafk,)*|x!. (7.1.45)

Since the equation of time evolution for {x(t)) is linear, we can apply the methods
of Sect.3.7.4, namely, the regression theorem, which states that the stationary
autocorrelation function has the same time dependence as the mean, and its value
at t = 0 is the stationary variance. Hence,

{x(1))s = kyafk, (7.1.46)
var {x(1)}, = kaafk, (7.1.47)
{x(t), x(0)), = e *kyalk, . (7.1.48)

The Poissonian stationary solution also follows from (7.1.13) by direct substitution.
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€) Poissonian Time-Dependent Solutions
A very interesting property of this equation is the existence of Poissonian time-
dependent solutions. For if we choose

~aogs
P(x,0) =° T (7.1.49)
then
G(s,0) = exp [(s — Day] (7.1.50)

and from (7.1.32) we find
G(s, 1) = exp ((s — Dlage™ " +(k,alk,)(1 —e~ %)) (7.1.51)
corresponding to

e @ () a(t )x

P(x,t) = 1 (7.1.52)
with

a(t) = age™ " + (kya/k)(1—e k7). (7.1.53)
Here a(t) is seen to be the solution of the deterministic equation

Z—f =k,a — k\x (7.1.54)
with the initial condition x(0) = a,. (7.1.55)

This result can be generalised to many variables and forms the rationale for the
Poisson representation which will be developed in Sect. 7.7. The existence of Pois-
sonian propagating solutions is a consequence of the linearity of the system.

7.1.3 A Chemical Bistable System

We consider the system

A 42X <3X ' (7.1.56)
2
A=y (7.1.57)
kg

which has been studied by many authors [7.1]. The concentration of A is held fixed
so that we have
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t*(x) = kAx(x — 1) + k;A4

(7.1.58)
17(x) = kyx(x — 1) (x — 2) + kox.
The corresponding deterministic equation is, of course,
dx
7= =1
(7.1.59)

=~ —k2x3 + k,sz —_ k4x + k3A s

where it is assumed that x > 1 so that we set x(x — 1) (x — 2) = x?, etc. The solu-
tion of this equation, with the initial condition x(0) = x,, is given by

(x — X ) *37*2 (x — X, ) *17x3 (x — xg)"z"*l
Xo — X1 Xo — X2 Xo — X3

= exp [—ka(x; — x2)(x, — Xx3)(x3 — x))t] . (7.1.60)
Here, x,, x,, x5 are roots of
kyx3 — kyAx? 4+ kyx — x34 =0 (7.1.61)

with x; > x, > x,.
Clearly these roots are the stationary values of the solutions x(¢) of (7.1.59).
From (7.1.59) we see that

x<xl :->Z"—tx>0

dx
X2 >x>x =<0 (1.1.62)

X3 > X > X, ——_>Z_-tx>0

x>X3 :>Z;tx<0.

Thus, in the region x < x,, x(¢) will be attracted to x, and in the region x > x,,
x(t) will be attracted to x;. The solution x(t) = x, will be unstable to small pertur-
bations. This yields a system with two deterministically stable stationary states.

a) Stochastic Stationary Solution
From (7.1.13)

_ x (Blz—1)(z—2)+ P
P(x) = P,0) 11 2(z—1)(z —2)+ Rz’

(7.1.63)

where
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B =k Alk,
R = k4/k2 (7.1.64)
P = kg/k| .

Notice that if P = R, the solution (7.1.63) is Poissonian with mean B. In this case,
we have a stationary state in which reactions (7.1.56, 57) are simultaneously in
balance. This is chemical equilibrium, in which, as we will show later, there is always
a Poissonian solution (Sects. 7.5.1 and 7.7b). The maxima of (7.1.63) occur,
according to (7.1.21), when

B=x[(x—1)(x—2)+ RJ/[P + x(x — 1)]. (7.1.65)

The function x = x(B), found by inverting (7.1.65), gives the maxima (or minima)
corresponding to that value of B for a given P and R.
There are the two asymptotic forms:

x(B) ~ B large B

(7.1.66)

x(B) ~ PB/R small B
If R > 9P, we can show that the slope of x(B) becomes negative for some range
of x > 0 and thus we get three solutions for a given B, as shown in Fig. 7.1. The
transition from one straight line to the other gives the kink that can be seen.

Notice also that for the choice of parameters shown, the bimodal shape is signi-
ficant over a very small range of B. This range is very much narrower than the
range over which P(x) is two peaked, since the ratio of the heights of the peaks
can be very high.

2000 (-

X(8)
1000

1 10/ 20( 30\ 4O\_R/P
Fig. 7.1. Plot of x(B) against B,
as given by the solution of (7.1.65)

1 for various values of R/P, and
1000 2000 P = 10,000
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A more precise result can be given. Suppose the volume V of the system be-
comes very large and the concentration y of X given by

y=xV,
is constant. Clearly the transition probabilities must scale like V, since the rate of
production of X will scale like x = yV.
Hence,
kA ~V (7.1.67)
kz -~ 1/‘/2
ky~1

which means that

B~V
R~ V? (7.1.68)
P~ V2.

We then write

B= BV ¥
R = Rv?
P = Py?

so that (7.1.65) becomes
B = y(»* + R)/(»* + P).

And if y, and y, are two values of y,

log [P.(y)/ P.(n)] = 3% {log BV + log (2 + PV?)

— log [2(z* + RV?)]} (7.1.69)
and we now approximate by an integral
Y B(y* + P)
~ V,dey [log('y(y2 ) )]
Hence,
P(yy) _ ?10g (B2 £ P) 7.1.7
Py~ exP[V!t log (y(y2 + R))] (7.1.70)
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and as V' — oo, depending on the sign of the integral, this ratio becomes either
zero or infinity. Thus, in a large volume limit, the two peaks, unless precisely equal
in height, become increasingly unequal and only one survives.

The variance of the distribution can be obtained by a simple trick. Notice from
(7.1.63) that P(x) can be written

P(x) = B*G(x), (7.1.71)

where G(x) is a function defined through (7.1.63). Then,

oy = [20 B G(x)] [20 B"G(x)]-l |

and (7.1.72)
B (08 = (21 — (o
so that
var {x} = Ba% (x> . (7.1.73)
From this we note that as ¥V — oo,
var{y} ~ 5 —o0. (7.1.74)

So a deterministic limit is approached. Further, notice that if (x> is proportional
to B, the variance is equal to the mean, in fact, we find on the two branches (7.1.66),

{x(B)y = var{x(B)} = B large B
{x(B)) = var{x(B)} = PB/R small B

which means that the distributions are roughly Poissonian on these limiting
branches.

The stochastic mean is not, in fact, given exactly by the peak values but ap-
proximates it very well. Of course, for any B there is one well defined {(x(B)), not
three values. Numerical computations show that the mean closely follows the
lower branch and then suddenly makes a transition at B, to the upper branch.
This will be the value at which the two maxima have equal height and can, in
principle, be determined from (7.1.70).

b) Time-Dependent Behaviour

This is impossible to deduce exactly. Almost all approximation methods depend
on the large volume limit, whose properties in a stationary situation have just been
noted and which will be dealt with systematically in the next section.
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7.2 Approximation of Master Equations by Fokker-Planck
Equations

The existence of the parameter V in terms of which well-defined scaling laws are
valid leads to the concept of system size expansions, first put on a systematic basis
by van Kampen [7.2]. There is a confused history attached to this, which arises out of
repeated attempts to find a limiting form of the Master equation in which a Fokker-
Planck equation arises. However, the fundamental result is that a diffusion proces-
can always be approximated by a jump process, not the reverse.

7.2.1 Jump Process Approximation of a Diffusion Process

The prototype result is that found for the random walk in Sect.3.8.2, that in the
limit of infinitely small jump size, the Master equation becomes a Fokker-Planck
equation. Clearly the jumps must become more probable and smaller, and this can
be summarised by a scaling assumption: that there is a parameter J, such that the
average step size and the variance of the step size are proportional to d, and such
that the jump probabilities increase as J becomes small.

We assume that the jump probabilities can be written

Wé(xll-x) — ¢ X,L\/%A(—x)—é’ X) 6—3/2 , (721)
¥
where
[dy ®(y,x) =Q (7.2.2)
and
[dyy®(y,x)=0. (7.2.3)

This means that

ay(x) = [ dxX'Ws(x'| x) = Q/6
a(x) = [ dxX'(xX' — x)Ws(x'| x) = A(X)Q (7.2.4)
ay(x) = [ dx'(x' — x)*Ws(x'|x) = [ dy y*D(y, x) .

We further assume that &(y, x) vanishes sufficiently rapidly as y — oo, so that

3

lim Ws(x'|x) = lim[( Y ) &, x)] —0 for X #x. (1.2.5)
§—0 y—oo L \X — X

The conditions (7.2.4, 5) are very similar to those in Sect.3.4, namely, (3.4.1, 4, 5)

and by taking a twice differentiable function f(z), one can carry out much the same

procedure as that used in Sect. 3.4 to show that
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implying that in the limit § — 0, the Master equation

ag(tx) = [ dx'W(x|X)P(x') — W(x'| x)P(x)]

becomes the FPE

1

2 ox?

0P(x) _

B O

a,(x)P(x) .

(7.2.6)

(7.2.7)

(7.2.8)

Thus, given (7.2.8), oge can always construct a Master equation depending on a
parameter J which approximates it as closely as desired. Such a Master equation
will have transition probabilities which satisfy the criteria of (7.2.4). If they do not
satisfy these criteria, then this approximation is not possible. Some examples are

appropriate.

a) Random Walk (Sect.3.8.2)
Let x = nl, then

W(x'x’) = d(ax’.x—l + 6:'.x+1) .

Then
ay(x) = 2d
a(x) =0
a,(x) = 2%d ;
let
o=1"_
and
D= 1d.

Then all requirements are met, so the limiting equation is
oP_ P
ot ox?

as found in Sect.3.8.2.

b) Poisson Process (Sect.3.8.3)
Here, letting x = nl,

W(x|x") = do,. 144

(7.2.9)

(7.2.10)

(7.2.11)

(7.2.12)

(7.2.13)

(7.2.14)
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and
ay(x) =d
a(x)=1d (7.2.15)
a)(x) = I*d.

There is no way of parametrising / and d in terms of J such that / — 0 and both
a,(x) and a,(x) are finite. In this case, there is no Fokker-Planck limit.

¢) General Approximation of Diffusion Process by a Birth-Death Master Equation
Suppose we have a Master equation such that

Wit 1) = (52 4+ 5 b s + [~ 552+ 5 s (12.16)

so that for sufficiently small d, Ws(x'|x) is positive and we assume that this is
uniformly possible over the range of x of interest. The process then takes place on a
range of x composed of integral multiples of J. This is not of the form of (7.2.1)
but, nevertheless, in the limit § — 0 gives a FPE. For

ao(x) = B(x)/6* (7.2.17a)

ay(x) = A(x) (7.2.17b)

ay(x) = B(x) . (7.2.17¢)
and

lim Wyx'|x) =0  for ' #x. (7.2.17d)

Here, however, ay(x) diverges like 1/6%, rather than like 1/6 as in (7.2.4) and the
picture of a jump taking place according to a smooth distribution is no longer valid.
The proof carries through, however, since the behaviour of ay(x) is irrelevant and
the limiting FPE is

0P(x)
ar

— % AX)P(x) + % 33722 B()P(x). (1.2.18)

In this form, we see that we have a possible tool for simulating a diffusion process
by an approximating birth-death process. The method fails if B(x) = 0 anywhere
in the range of x, since this leads to negative Ws(x'|x).  Notice that the stationary
solution of the Master equation in this case is

0A(z — 0) + B(z — 5)]

P,(x) = P,0) 135[ —0A(2) + B(2)

_ _8A(0) + B(0)] x, [ + 6A4(2)/B(2)
=P ’(0)[ 5AC) ¥ B(x)] [1 — 5,4(2)/3(2)]

(7.2.19)

z=0
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so that, for small enough ¢
log Py(x) — const — log B(x) + f‘_, 26 A(2)/B(z) , (7.2.20)
2=0
ie.,

P, (x) — <—exp[2 _[ dz A(2)/B(2)] (7.2.21)

B()

as required. The limit is clearly uniform in any finite interval of x provided A(x)/B(x)
is bounded there.

7.2.2 The Kramers-Moyal Expansion

A simple but nonrigorous derivation was given by Kramers [7.3] and considerably
improved by Moyal [7.4]). It was implicitly used by Einstein [7.5] as explained in
Sect. 1.2.1.

In the Master equation (7.2.7), we substitute x’ by defining

y=x—x in the first term, and
y=x"—x in the second term.
Defining
t(y, x) = W(x + y|x), (71.2.22)

the master equation becomes

P f ay (3, x — )P(x — ) — 13, VPO (7223)

We now expand in power series,

=[5 S0 (5, 0P (1.2.24)

=5 C 2 0P, (7.2.25)
where

a,(x) = [ dxX'(x' — x)"W(x'|x) = [ dy y" 1(y, x) . (7.2.26)

By terminating the series (7.2.25) at the second term, we obtain the Fokker-Planck
equation (7.2.8).

In introducing the system size expansion, van Kampen criticised this “proof™,
because there is no consideration of what small parameter is being considered.
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Nevertheless, this procedure enjoyed wide popularity—mainly because of the
convenience and simplicity of the result. However, the demonstration in Sect.7.2.1
shows that there are limits to its validity. Indeed, if we assume that W(x'|x) has
the form(7.2.1), we find that

a,(x) = 6" [ dy y"®(y, X) . (7.2.27)

So that as § — 0, terms higher than the second in the expansion (7.2.25) (the
Kramers-Moyal expansion) do vanish. And indeed in his presentation, Moyal
[7.4] did require conditions equivalent to (7.2.4, 5).

7.2.3 Van Kampen’s System Size Expansion [7.2]

Birth-death master equations provide good examples of cases where the Kramers-
Moyal expansion fails, the simplest being the Poisson process mentioned in Sect.
7.2.1.

In all of these, the size of the jump is 4-1 or some small integer, whereas typical
sizes of the variable may be large, e.g., the number of molecules or the position
of the random walker on a long lattice.

In such cases, we can introduce a system size parameter £2 such that the transi-
tion probabilities can be written in terms of the intensive variables x/Q etc. For
example, in the reaction of Sect.7.1.3, 2 was the volume ¥V and x/f2 the concentra-
tion. Let us use van Kampen’s notation:

a = extensive variable (number %of molecules, etc oc Q)

x = a/Q intensive variable (concentration of molecules).

The limit of interest is large Q2 at fixed x. This corresponds to the approach to a
macroscopic system. We can rewrite the transition probability as

W(a|a') = W(a'; Aa)
Aa=a—d. (7.2.28)

The essential point is that the size of the jump is expressed in terms of the extensive
quantity Aa, but the dependence on a' is better expressed in terms of the intensive
variable x.

Thus, we assume that we can write

W(d'; Aa) = Qu ("5 Aa). (7.2.29)

If this is the case, we can now make an expansion. We choose a new variable z so
that
a= Q¢(t) + Q'?z, (7.2.30)

where 4(¢) is a function to be determined. It will now be the case that the a,(a) are
proportional to Q: we will write
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a,(a) = Qa,(x) . (7.2.31)

We now take the Kramers-Moyal expansion (7.2.25) and change the variable to
get

0P(z, t)

P
= — Qg (,)a (z t)

Ql -nl/2

y (_ ai) 6() + Q2P ). (1.2.32)

The terms of order Q'/? on either side will cancel if ¢(¢) obeys
#(1)=alg()) - (7.2.33)

which is the deterministic equation expected. We expand &,[¢(¢t) + Q7'/?z] in powers
of 27'/2, rearrange and find
0P(z,t) & Q P12 - m!
o ,,.2

= ' a=inl(m —

P70 (— (%) "mnP(z, 1) . (7.2.34)

Taking the large Q2 limit, only the m = 2 term survives giving

a‘”—‘Pf'f[ 0 - “ll¢<f)1—z P(z, 1) + a2[¢(r)1 5 Pz 1). (1.2.35)

a) Comparison with Kramers-Moyal Result

The Kramers-Moyal Fokker-Planck equation, obtained by terminating (7.2.25)
after two terms, is

20D — _ 2 (o, @P@] + 5 2 @) P(a)] (7.2.36)

and changing variables to x = a/Q2, we get

aI;(tX) ["l(")” N+ 35 29 a 2 [a0P@). (7.2.37)

We can now use the small noise theory of Sect. 6.3, with
g =L (7.2.38)
Q

and we find that substituting
z=Q"x — 4(1)], (7.2.39)

the lowest-order FPE for z is exactly the same as the lowest-order term in van
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Kampen’s method (7.2.35). This means that if we are only interested in the lowest
order, we may use the Kramers-Moyal Fokker-Planck equation which may be
easier to handle than van Kampen’s method. The results will differ, but to lowest
order in 272 will agree, and each will only be valid to this order.

Thus, if a FPE has been obtained from a Master equation, its validity depends
on the kind of limiting process used to derive it. If it has been derived in a limit
6 — 0 of the kind used in Sect.7.2.1, then it can be taken seriously and the full
nonlinear dependence of a,(a) and a,(a) on a can be exploited.

On the other hand, if it arises as the result of an Q expansion like that in Sect.
7.2.3, only the small noise approximation has any validity. There is no point in
considering anything more than the linearisation, (7.2.35), about the deterministic
solution. The solution of this equation is given in terms of the corresponding
stochastic differential equation

dz = &[§()]z dt + /&[g(1)] AW() . (7.2.40)

by the results of Sect. 4.4.7 (4.4.69), or Sect. 4.4.9 (4.4.83).

b) Example: Chemical Reaction X — 4
From Sect. 7.1.2, we have

W(x|x) = 6, xr01k2a + Ospriby X" . (7.2.41)
The assumption is

a=a,V
(7.2.42)

x = x,V,

where V is the volume of the system. This means that we assume the total amounts
of A and X to be proportional to V (a reasonable assumption) and that the rates of
production and decay of X are proportional to a and x, respectively.

Thus,

W(xo; Ax) = V[kaoOsx1 + k1 Xg04x,-1] (7.2.43)

which is in the form of (7.2.29), with Q — V, a — x, etc.
Thus,

a(x) = D (x' — x)W(x'|x) = k,a — kyx = Vk,a, — ki1x,)
a)(x) = D3 (X' — x)*W(x'| x) = kqa + kyx = Vik.a, + kix,)

(7.2.44)

The deterministic equation is
#'(1) = [kaao — ki g(1)] (7.2.45)

whose solutions is

#(t) = g(0)e~"r + kk’—?“ (1 —e k). (7.2.46)
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The Fokker-Planck equation is

oP(z) _
“or

1 o2
kl 32 zP(z) + > @[kzao + ki g()]P(2) . (7.2.47)
From (4.4.84, 85) we can compute that
(z(t)y = z(0)e™ v . (7.2.48)

Usually, one would assume z(0) = 0, since the initial condition can be fully dealt
with by the initial condition on ¢. Assuming z(0) is zero, we find

var {z(1)) = [kza" i ¢(0)e"‘l‘] (1 — e-Hr) (7.2.49)
so that

G0 = Vi) = VhORr + 5221 — e (7.2.50)

var (x(1)} = V var {z(1)} = [’j:" V¢(0)e"‘l‘](l — ek (1.2.51)

With the identificationV¢(0) = N, these are exactly the same as the exact solutions
(7.1.38-40) in Sect. 7.1.2. The stationary solution of (7.2.47) is

2
P(z) = A exp (— zk,ézzao) (7.2.52)

which is Gaussian approximation to the exact Poissonian.
The stationary solution of the Kramers-Moyal equation is

P(x) = —ex [jz“'g,;d ]

= ./V(kza + ko x)" 1t ekaalkig2x (7.2.53)

In fact, one can explicitly check the limit by setting

x = V(kaaolk)) + 6 (7.2.54)
so that

(7.2.53) = #"(2Vk,a, + k,\0) 1 +4Vkaeo/kig=2Viao/ki=28 (7.2.55)
Then,

log P(x) = const — 06— ). (7.2.56)

2kV
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Using the exact Poissonian solution, making the same substitution and using
Stirling’s formula

log x! ~ (x + 1) log x — x + const, (7.2.57)

one finds the same result as (7.2.56), but the exact results are different, in the sense
that even the ratio of the logarithms is different.
The term linear in d is, in fact, of lower order in V: because using (7.2.39), we

find 6 = z+/V and

k, z
log Py(z) ~ const — yag (\/7 z ) (7.2.58)

so that in the large ¥V limit, we have a simple Gaussian with zero mean.

¢) Moment Hierarchy
From the expansion (7.2.34), we can develop equations for the moments

{2y = [ dz P(z,1)z* (7.2.59)
by direct substitution and integration by parts:

Q- m-D /2 mk mlk! ~ (m—
T 2 AT i i O O L (12:60)

@y = 2

SIEY

One can develop a hierarchy by expanding {(z*) in inverse powers of Q'/2:
&y =3 MkQ1, (7.2.61)
r=0

From such a hierarchy one can compute stationary moments and autocorrelation
functions using the same techniques as those used in handling the moment hierar-
chy for the small noise expansion of the Fokker-Planck equation in Sect.6.3.1.
Van Kampen [7.2] has carried this out.

7.2.4 Kurtz’s Theorem

Kurtz [7.6] has demonstrated that in a certain sense, the Kramers-Moyal expansion
can give rise to a slightly stronger result than van Kampen’s expansion. For the
restricted class of birth-death processes with polynomial transition probabilities,
he has shown the following. We consider the stochastic process obeying a birth-
death master equation

8.P(a, 1) = 3 Wia|a)P(d, 1) — 3} W(d |a)P(a, 1) (7.2.62)

in which the scaling condition (7.2.29) is satisfied.
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Then the process b(t), satisfying the stochastic differential equation

db(t) = a\(b)dt + /ay(b) AW(1) (7.2.63)

exists, and to each sample path a(t) of (7.2.62) a sample path of b(¢) of (7.2.63)
exists such that

|b(t) — a(t)| ~log V (7.2.64)

for all finite t.

This result implies the lowest order result of van Kampen. For, we make the
the substitution of the form (7.2.30)

alt) = V() + V() (7.2.65)
b(t) = V(1) + V1I(1) . (7.2.66)

Then the characteristic function of z(¢) is

Cexp [isz(t)]) = <exp [isV™""%a(t) — isV'24(1)])
= exp [— isV'2g(1)]<exp [isV "' 2b(1)]) + O(V~"'*log V)
= (exp [isy(?)]) + O(V~"*log V). (7.2.67)

Using now the asymptotic expansion for the FPE we know the distribution function
of y(t) approaches that of the FPE (7.2.35) to O(V~/2) and the result follows with,
however, a slightly weaker convergence because of the log V term involved. Thus,
in terms of quantities which can be calculated and measured, means, variances,
etc, Kurtz’s apparently stronger result is equivalent to van Kampen’s system size
expansion.

7.2.5 Critical Fluctuations

The existence of a system size expansion as outlined in Sect.7.2.3 depends on the
fact that &@,(a) does not vanish. It is possible, however, for situations to arise where

#4) =0, (7.2.68)

where g, is a stationary solution of the deterministic equation. This occurs, for
example, when we consider the reaction of Sect.7.1.3 for which (using the notation
of that section)

&(y) = (By* +p — y* — yRk,,
where k, = Vk,.
Two situations can occur, corresponding to 4 and B in Fig. 7.2. The situation

A corresponds to an unstable stationary state—any perturbation to the left will

eventually lead to C, but B is stable. Clearly the deterministic equation takes the
form
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Fig. 7.2. Graph showing different kinds of
behaviour of a,(y) which lead 10 a!(y) =

y=—ki(y — 4) (7.2.69)

and we have a Master equation analogue of the cubic process of Sect.6.2.4a.
Van Kampen [7.13] has shown that in this case we should write

a=Q¢t)+ Q2*u (7.2.70)
in which case (7.2.32) becomes

aP(z, 1) 6P(z, t) Q'l-un

-5

= n!

— =5~ (_ %) 140+ 2P ) (1.2.71)

Suppose now that the first g — 1 derivatives of &,(¢,) vanish. Then if we choose g,
for 4(t), (7.2.71) becomes to lowest order

Pz,r) 1, (l—m—)i q
at - q!alq (¢s)~Q a s 8z(z p)

2
+ %a2(¢s)9“"‘g—z’i + higher terms. (7.2.72)
To make sure z remains of order unity, set

A—q)(I —p)=( —2p), i, u= # (1.2.73)

so the result is

P _ o -nrer L a q a*p

5= 0 ( A0 570+ i (7.2.74)
(where @@ and &, are evaluated at 4,.) The fluctuations now vary on a slower time
scale 7 given by
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T = Q- D/@+D (7.2.75)

and the equation for the average is

‘%?;Q - %&gq)@q) (7.2.76)

which is no longer that associated with the linearised deterministic equation. Of
course, stability depends on the sign of #? and whether ¢ is odd or even. The sim-
plest stable case occurs for ¢ = 3 which occurs at the critical point B of Fig.7.2,
and in this case we have the cubic process of Sect.6.3.4a. The long-time scale is

= QY. # (7.2.77)

We see that for large Q, the system’s time dependence is given as a function of
7= Q7"?. Only for times ¢ > Q'/? does T become a significant size, and thus it
is only for very long times ¢ that any significant time development of the system
takes place. Thus, the motion of the system becomes very slow at large Q.

The condition (7.2.68) is normally controllable by some external parameter,
(say, for example, the temperature), and the point in the parameter space where
(7.2.68) is satisfied is called a critical point. This property of very slow time
development at a critical point is known as critical slowing down.

7.3 Boundary Conditions for Birth-Death Processes

For birth-death processes, we have a rather simple way of implementing boundary
conditions. For a process confined within an interval [a, b], it is clear that reflecting

"and absorbing boundary conditions are obtained by forbidding the exit from the
interval or the return to it, respectively. Namely,

Reflecting Absorbing
Boundary at a t= (@ =0 tf@a—1)=0 (7.3.1)
Boundary at b t*b)=0 tb+1)=0.

It is sometimes useful, however, to insert boundaries in a process and, rather than
set certain transition probabilities equal to zero, impose boundary conditions
similar to those used for Fokker-Planck equations (Sect.5.2.1) so that the resulting
solution in the interval [a, b] is a solution of the Master equation with the ap-
propriate vanishing transition probabilities. This may be desired in order to pre-
serve the particular analytic form of the transition probabilities, which may have a
certain convenience.

a) Forward Master Equation
We can write the forward Master equation as
0P(x, t|x',t)=t*(x — DP(x — 1, t|x, ")+t~ (x + DP(x + 1, t|x', t')
— [t (x) + =) P(x, t|x", t') . (7.3.2)
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Suppose we want a reflecting barrier at x = a. Then this could be obtained by re-
quiring

t(a@=0
and
Pla— 1,t|x',t)=0. (7.3.3)

The only equation affected by this requirement is that for 3,P(a, t| x’, t") for which
the same equation can be obtained by not setting #~(a) = 0 but instead introducing
a fictitious P(a — 1, t|x', ¢') such that

t*(a — DP(a — 1, t|x', t') = t~(a)P(a, t| X', t') . (7.3.4)

This can be viewed as the analogue of the zero current requirement for a reflecting
barrier in a Fokker-Planck equation.
If we want an absorbing barrier at x = a, we can set

t*@—1)=0. (7.3.5)

After reaching the point a — 1, the process never returns and its behaviour is now
of no interest. The only equation affected by this is that for d,P(a, t| x’, t’) and the
same equation can be again obtained by introducing a fictitious P(a — 1, t|x', t’)
such that §

Pla—1,t|x,t)=0. (7.3.6)

Summarising, we have the alternative formulation of imposed boundary condi-
tions which yield the same effect in [q, b] as (7.3.1):

Foward Master Equation on interval [a, b]

Reflecting Absorbing
(7.3.7)
Boundary at ¢ |t (@)P(@) =t*(@— 1)P(a—1) Pla—1)=0
Boundary at b [ t*(B)P(B) =t=(b+ DPL+1) PBL+1)=0
b) Backward Master Equation
The backward Master equation is (see Sect. 3.6)
0,P(x, t|x',t") = t*(X"[P(x, t|x" + 1,¢") — P(x, t|x', t')]
+ t=(xXP(x, t|x' — 1,t) — P(x, t|x', t)]. (7.3.8)

In the case of a reflecting barrier, at x = a, it is clear that -(a) = 0 is equivalent to
constructing a fictitious P(x, t|a — 1, ¢') such that

Plx tla — 1 "N = Plv tla "\ 7120\
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In the absorbing barrier case, none of the equations for P(x,t|x’,t’) with
x,x" € [a, b] involve t*(a — 1). However, because t*(a — 1) = 0, the equations in
which x' < a — 1 will clearly preserve the condition
P(x,t|x',t'y =0, x € [a, b], X <a—1 (7.3.10)
and the effect of this on the equation with x" = a will be to impose

P(x,tla—1,t)=0 (1.3.11)

which is therefore the required boundary condition. Summarising:

L4

Backward Master Equation on interval [a, b]

Reflecting Absorbing

(7.3.12)
Boundary at a P(-la—1)= P(-|a) P(-la—1)=0

Boundary atb  P(-|b + 1) = P(-|b) P¢|b+1)=0

7.4 Mean First Passage Times

The method for calculating these in the simple one-step case parallels that of the
Fokker-Planck equation (Sect.5.2.7) very closely. We assume the system is confined
to the range

a<x<b (7.4.1)

and is abosrbed or reflected at either end, as the case may be. For definiteness we
take a system with

reflecting barrier at x = a;

absorbing state at x=5b+1.

The argument is essentially the same as that in Sect.5.2.7 and we find that T(x),
the mean time for a particle initially at x to be absorbed, satisfies the equation
related to the backward Master equation (7.3.8):

OMTx 4+ 1) —TX)] + t=)[T(x — 1) — T(x)] = — 1 (7.4.2)
with the boundary condition corresponding to (5.2.159) and arising from (7.3.12):
Ta@—1)=T(a) (7.4.3a)

T+ 1)=0. (7.4.3b)
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Define

Ux) = T(x + 1) — T(x)
50 (7.4.2) becomes

t*)UX) —t=(x)U(x— 1) = 1.

Define
$(x) = H1 ; :8 and

S(x) = U(x)/¢(x)
then (7.4.5) is equivalent to
1 ()gIS(x) — S(x — D] = —1

with a solution
() = — 2 1))

This satisfies the boundary condition (7.4.3a) which implies that
Ua—1)=S@—1)=0.

Hence,

T(x + 1) = T() = —4(x) 3 11 (2)(2)]

and
, , a reflecting
T(x) = 22 ¢(») 22 1/[t*(2)(2)] b absorbing
T e b>a

which also satisfies the boundary condition T(b + 1) = 0, (7.4.3b).

Similarly, if a is absorbing and b reflecting

R . a absorbing
T(x) =3 ¢(») 25 1t *(2)$(2)] b reflecting
re i b>a

(7.4.4)

(7.4.5)

(1.4.6)

(7.4.7)

(7.4.8)

(7.4.9)

(7.4.10)

(7.4.11)

(7.4.12)

(7.4.13)

and a formula corresponding to (5.2.158) for both a and b absorbing can be

similarly deduced.
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7.4.1 Probability of Absorption

The mean time to absorption is always finite when a and b are finite. If, however,
b is at infinity and is reflecting, the mean time may diverge. This does not itself
mean that there is a finite probability of not being absorbed. The precise result [Ref.
7.7, Sect.4.7] is the following.

If the process takes place on the interval (a, c0) and a is absorbing, then the
probability of absorption into state a — 1 from state x is given as follows. Define
the function M(x) by

[ t*(y)]
M(x) = . 7.4.14
™ Z[H () (7419
Then if M(x) < oo, the probability of absorption at a — 1, from state x, is
M(x)
T+ Mo (7.4.15)

and if M(x) = oo, this probability is one. If this probability is 1, then the mean
time to absorption is (7.4.13).

7.4.2 Comparison with Fokker-Planck Equation

The formulae (7.4.12, 13) are really very similar to the corresponding formulae
(7.4.1, 2) for a diffusion process. In fact, using the model of Sect. 7.2.1c it is not
difficult to show that in the limit § — O the two become the same.

If we wish to deal with the kind of problem related to escape over a potential
barrier (Sect.5.2.7¢c) which turn up in the context of this kind of master equation,
forexample, in the bistable reaction discussed in Sect.7.1.3, very similar approxima-
tions can be made. In this example, let us consider the mean first passage time from
the stable stationary state x, to the other stable stationary state x;.

Then the point x = 0 is a reflecting barrier, so the interval under consideration
is (0, x;) with initial point x,. Notice that

* 1=(2) _ P0)1*(0)

8090 =1 52 = P 17 () (7.4.16)
so that
T —x) = 3 [POICONT B P). (7.4.17)

y=xi

If we assume that P(y)~! has a sharp maximum at the unstable point x,, we can
set y = x, in all other factors in (7.4.17) to obtain

Te = x3) ~ s L IPON (7.4.18)
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n = * P(2) (7.4.19)
z=0
and is the total probability of being in the lower peak of the stationary distribution.
The result is a discrete analogue of those obtained in Sect. 5.2.7c.

7.5 Birth-Death Systems with Many Variables

There is a very wide class of systems whose time development can be considered as
the result of individual encounters between members of some population. These
include, for example,
—chemical reactions, which arise by transformations of molecules on collision;
—population systems, which die, give birth, mate and consume each other;
—systems of epidemics, in which diseases are transmitted from individual to
individual by contact.
All of these can usually be modelled by what I call combinatorial kinetics, in which
the transition probability for a certain transformation consequent on that en-
counter is proportional to the number of possible encounters of that type.
For example, in a chemical reaction X = 27, the reaction X — 2Y occurs by
spontaneous decay, a degenerate kind of encounter, involving only one individual.
The number of encounters of this kind is the number of X; hence, we say

t(x—»x—l,y—»y+2)=k,§. (7.5.1)

For the reverse reaction, one can assemble pairs of molecules of Y in y(y — 1)/2
different ways. Hence

tx—x+1L,y—y—2=kyy—1. (7.5.2)

In general, we can consider encounters of many kinds between molecules, species,
etc., of many kinds. Using the language of chemical reactions, we have the general
formulation as follows.

Consider an n-component reacting system involving s different reactions:

kY '
SNAX, == S MAX, (A=1,2 ..5). (7.5.3)
a k> a

A

The coefficient N4 of X, is the number of molecules of X, involved on the left
and M4 is the number involved on the right. We introduce a vector notation so that
if x, is the number of molecules of X, then

x = (xl, X2y oevy xn)

N4 = (N4, N4, ..,N% (7.5.9)

MA=(M4{, M4, ..., MY

and we also define
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ri=M*— N*. (7.5.5)
Clearly, as reaction A4 proceeds one step in the forward direction,

xX—x+r (7.5.6)

and in the backward direction,

x—-x—rt. (7.5.7)

The rate constants are defined by ’

1
) = kT
@ (X, = N)! (7.5.8)

17(x) = k3 IJ(F%JW

which are proportional, respectively, to the number of ways of choosing the com-
bination N or M“ from x molecules. The Master equation is thus

9.P(x, 1) = 3 {[ta(x + r)P(x + 4, 1) — t7(x)P(x, 1)]

A

+ [th(x — r)P(x — ri, t) — t4(x)P(x, 1)]}. (7.5.9)

This form is, of course, a completely general way of writing a time-homogeneous
Master equation for an integer variable x in which steps of size r4 can occur. It is
only by making the special choice (7.5.8) for the transition probabilities per unit
time that the general combinatorial Master equation arises. Another name is the

chemical Master equation, since such equations are particularly adapted to chemical
reactions.

7.5.1 Stationary Solutions when Detailed Balance Holds

In general, there is no explicit way of writing the stationary solution in a practical
form. However, if detailed balance is satisfied, the stationary solution is easily
derived. The variable x, being simply a vector of numbers, can only be an even
variable, hence, detailed balance must take the form (from Sect. 5.3.5)

t3(x + r)P(x + rY) = t4(x)P(x) (7.5.10)

for all 4. The requirement that this holds for all 4 puts quite stringent requirements
on the r%. This arises from the fact that (7.5.10) provides a way of calculating
P(x, + nr*) for any n and any initial x,. Using this method for all available 4, we
can generate P (x) on the space of all x which can be written

x=x,+ D nat; (n, integral) (7.5.11)

but the solutions obtained may be ambiguous since, for example, from (7.5.10) we
may write
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y 5y _ _ Po(x) t3(x) t3(x + r)
PIG A9+ 1) = o 5 ) 136 + 1 1 79) 1
but (7.5.12)
B a_ _ Px) t5(x) ti(x + r?) ‘
Pl + )+ = ta(x + r®) e (x + rt + rP)

Using the combinatorial forms (7.5.8) and substituting in (7.5.12), we find that
this condition is automatically satisfied.

The condition becomes nontrivial when the same two points can be connected
to each other in two essentially different ways, i.e., if, for example,

NA + N®
MA+ M? (1.5.13)

but rM=r=r.

In this case, uniqueness of Py(x + r4)in (7.5.10) requires

ti(x) tix)
tdx+r) taxx+r) (7.5.14)

and this means

ki ki

eial=t (7.5.15)
If there are two chains 4, B, C, ..., and A’, B’, C', ..., of reactions such that

I e L e A o L N i (7.5.16)
Direct substitution shows that

Px4+ri4+rP+r4+ . )=Px+r'+r"+r"+.) (7.5.17)

only if

kikzke  kukg ke (7.5.18)

which is, therefore, the condition for detailed balance in a Master equation with
combinatorial kinetics.
A solution for P,(x) in this case is a multivariate Poisson

P(x) =TI “:;e!_ - (1.5.19)
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which we check by substituting into (7.5.10) which gives

H (i+2i): (x’:aix:;—ri)l!:)! - 1;1 a:;,,e '— - (x, ixir!g)! : (7.5.20)
Using the fact that
= M4 —
we find that
kKill e, g ki Il e, (7.5.21)

However, the most general solution will have this form only subject to conser-
vation laws of various kinds. For example, in the reaction

X =27, (7.5.22)
the quantity 2x + y is conserved. Thus, the stationary distribution is

—ay ax e—d

A 0x 1 y) (7.5.23)

where ¢ is an arbitrary function. Choosing ¢(2x + y) = 1 gives the Poissonian
solution. Another choice is

#(2x + y) = 8(2x + y, N) (7.5.24)

which corresponds to fixing the total of 2x 4+ y at N.
As a degenerate form of this, one sometimes considers a reaction written as

A—=—=2Y (7.5.25)

in which, however, 4 is considered a fixed, deterministic number and the possible
reactions are

A—2Y: t*(y) =ka (7.5.26)
2Y -4 1Y) =ky(y — ).

In this case, the conservation law is now simply that y is always even, or always
odd. The stationary solution is of the form

P(y) = % w(y, ) (7.5.27)

where y(y, a) is a function which depends on y only through the evenness or oddness
of y.
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7.5.2 Stationary Solutions Without Detailed Balance (Kirchoff’s Solution)

There is a method which, in principle, determines stationary solutions in general,
though it does not seem to have found great practical use. The interested reader
is referred to Haken [Ref. 7.8, Sect.4.8] and Schnakenberg [7.4] for a detailed treat-
ment. In general, however, approximation methods have more to offer.

7.5.3 System Size Expansion and Related Expansions

In general we find that in chemical Master equations a system size expansion does
exist. The rate of production or absorption is expected to be proportional to , the
size of the system. This means that as Q — oo, we expect

x~Qp, (7.5.28)

where p is the set of chemical concentrations. Thus, we must have ¢ %(x) proportional
to Q2 as Q — oo, so that this requires

K~ iy @ TEE
(7.5.29)
-}a:Mng

ki~kKkyQ

Under these circumstances, a multi¥ariate form of van Kampen’s system size expan-
sion can be developed. This is so complicated that it will not be explicitly derived
here, but as in the single variable case, we have a Kramers-Moyal expansion
whose first two terms give a diffusion process whose asymptotic form is the same as
that arising from a system size expansion.

The Kramers-Moyal expansion from (7.5.9) can be derived in exactly the same
way as in Sect.7.2.2, in fact, rather more easily, since (7.5.9) is already in the ap-
propriate form. Thus, we have

a.P(x, 1) = 3 |2V

A,n n!

@ P 0+ Y wpe o (2530

and we now truncate this to second order to obtain

0.P(x, 1) = =X 2[AD)P(x, O] + } D 02Bu®P, 0], | (1.53D)
%) = S riti) — 1)

4 ’ (7.5.32)
Bu(®) = 3 rdrflti(x) + 13()].

In this form we have the chemical Fokker-Planck equation corresponding to the
L Y U, tian Wawavar we nate that thicic reallv anlv valid as an anproxima-
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tion, whose large volume asymptotic expansion is identical to order 1/2 with that

of the corresponding Master equation.

If one is satisfied with this degree of approximation, it is often simpler to use the
Fokker-Planck equation than the Master equation.

7.6 Some Examples

761 X+ A—2X

Here,
t*(x) = k,ax (7.6.1)
t(x) = kyx(x — 1) .
Hence,
A(X) = kiax — kyx(x — 1) ~ kjax — k,x*  to order 1/Q (7.6.2)
B(x) = kjax + kyx(x — 1) ~ kjax + k,x* to order 1/Q.
Y k
762 X=—=Y=—A
k y
Here we have
HE=w1 L, o (7.6.3)
17(x) =
() = ka‘ =(0,1). (71.6.4)
t7(x) =y
Hence,
A(x) = [ }(W — kx) + [ } (ka — yy) (7.6.5)
_ [ vy kex ] (1.6.6)
kx + ka — 2yy
0
— [[ o 1)] Gy + ) + [H o 1)] (ka + 1) 767
=[ ke =y —kx ] (1.6.8)
y—kx  2yy 4 kx + ka
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If we now use the linearised form about the stationary state,

yy=kx =ka (7.6.9)

(7.6.10)

[2ka —2ka]
| —2ka dka|’

7.6.3 Prey-Predator System

The prey-predator system of Sect. 1.3 provides a good example of the kind of system
in which we are interested. As a chemical reaction we can write it as

) X+4—2X r=(,0)
i) X4+ ¥Y—=2Y r=(—11) (7.6.11)
i) Y — B =0, —1).

The reactions are all irreversible (though reversibility may be introduced) so we
have

17:0) =0 (4=1,2,3)

but .
tH(x) =kia (_x—i'l—)' i—: = k,ax
HORS Y i!l)!(y 1!1)!= kaxy (71.6.12)
13(x) = k,;‘—i(Ti—!l—)ﬁ ksy .

The Master equation can now be explicitly written out using (7.5.9): one obtains

0,P(x,y) = kia(x — DP(x — 1, ) + ko(x + D(y — DP(x + 1,y — 1)
+ky(y + 1) P(x, y + 1) — (kyax + k,xy + ksy) P(x, y). (7.6.13)

There are no exact solutions of this equation, so approximation methods must be
used.

Kramers-Moyal. From (7.5.32)

A(x) = m kiax + [_” koxy + [_?] ksy (7.6.14)

(k,ax — kzxy}

7.6.15)
k,xy — ksy (
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1 —1 0
B(x) = M(l,O)k,ax + [ J(—l, Dkoxy + { J(o, —Dkay (7.6.16)
_ [k,ax +koxy  — kpxy } . (7.6.17)
—k,xy k.xy + ksy

The deterministic equations are

kjax — k
F;i?m - [ 1ax ny]. (7.6.18)
y koxy — ksy
Stationary State at
J Tkelk
r} = [ afka } (7.6.19)
ys kla/kz

To determine the stability of this state, we check the stability of the linearised
deterministic equation

d [0x]  0A(x) aA(xs)
E[ ] T dx, X+ dy, %
kia — k,y, —k,x, il
= ) ) 7.6.20
l:klys } * + |:k2xs - k3 Y ( )
0 —k3] [ox
= [ } [ J . (7.6.21)
k,a 0] Loy

The eigenvalues of the matrix are
A= =+ i(k ksa)'’? (7.6.22)

which indicates a periodic motion of any small deviation from the stationary state.
We thus have neutral stability, since the disturbance neither grows nor decays.
This is related to the existence of a conserved quantity

V=1Ikyx+y)—kilogx — kjalogy (7.6.23)

which can readily be checked to satisfy dV/dt = 0. Thus, the system conserves V
and this means that there are different circular trajectories of constant V.
Writing again

X = x, + ox (7.6.24)
y=y,+ oy

and expanding to second order, we see that
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S0 2 (7.6.25)

=3 ray?

so that the orbits are initially elliptical (this can also be deduced from the linearised
analysis).

As the orbits become larger, they become less elliptic and eventually either
X or y may become zero.

If x is the first to become zero (all the prey have been eaten), one sees that y
inevitably proceeds to zero as well. If y becomes zero (all predators have starved to
death), the prey grow unchecked with exponential growth.

Stochastic Behaviour. Because of the conservation of the quantity ¥, the orbits have
neutral stability which means that when the fluctuations are included, the system
will tend to change the size of the orbit with time. We can see this directly from the
equivalent stochastic differential equations

dx kiax — k,xy dw (1)
[ J = [ ]dt + C(x, ») , (7.6.26)
dy kyxy — ksy dw,(t)
where
C(x, »)C(x, )" = B(x) . (7.6.27)
Then using Ito’s formula *
v, 3RV, .0V 4
dV(x, y) = dx +a Wty (axz de 25 dxdy + 5o dy) (7.6.28)
so that
14
@,y = (3L tkax — kaxy) + 55 Geaxy — ko) (7.6.29)

k
+ <B,.2—;,+B,22—;2> drt .

The first average vanishes since V is deterministically conserved and we find

kik,a I k3kz L ki k,ax n k, k3a>

7.6.30
< ¥ y (7.6.30)

@ =5 (

All of these terms are of order Q7! and are positive when x and y are positive.
Thus, in the mean, V(x, y) increases steadily. Of course, eventually one or other of
the axes is hit and similar effects occur to the deterministic case. We see that
when x or y vanish, ¥V = oo.

Direct implementation of the system size expansion is very cumbersome in this
case, and moment equations prove more useful. These can be derived directly from
the Master equation or from the Fokker-Planck equation. The results differ slightly
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from each other, by terms of order inverse volume. For simplicity, we use the FPE
so that

4 ‘<x>} _ [k,a<x> - k2<xy>} (7631
t L<» ko dxyy — ks{p>
[{x2) 2x dx + dx*)
di‘: Gy | = % (xdy + y dx + dx dy) (7.6.32)
LD Qy dy + dy*
2k alx®y — 2k, {x*y) + kal{x) + k{xpy)
= k(5% — x> + (ka — ks — k) xyd . (7.6.33)

2k3(xy*> — 2ks{y*) + kalxy) + ks(y)

Knowing a system size expansion is valid means that we know all correlations and
variances are of order 1/Q2 compared with the means.
We therefore write

x = <{x) + 6x (7.6.34)
y =<y +dy

and keep terms only of lowest order. Noting that terms arising from {dx2), {dxdy)
and {dy*) are one order in 2 smaller than the others, we get

d '<x>} =[kla<x>—kz<x><y> } N [—kz«sxayﬂ (1635
dt [(py] [kl <py — kaxd<pd)  [Ka(Oxdy)
@ kiadxy + ky(x)(yd
77| x> | =| —kax> ()
L | Loy + ko (7636
2kia — 2k, {y), —2k,{x) , 0 {6x%)
+ | k) , kia— ks + k(<X — (), —kalx) (x3y)
0 , 2ko (3D , 2ky(xy — 2k || (O

. We note that the means, to lowest order, obey the deterministic equations, but to
next order, the term containing {(dxdy) will contribute. Thus, let us choose a sim-
plified case in which

ka=k,=1, k;=a (7.6.37)
which can always be done by rescaling variables. Also abbreviating

X = x, {y) =y, {6x*) — [, {oxdy) —~g, (o’ —h, (7.6.38)
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we obtain
i)l )+
y axy —y L ag
f x4+ axy|l [2—2ay —2ax 0 f
‘—j; gl=|—axy |+|ay alx —y) —ax gl (7.6.39)
h axy +y]| |0 2ay 2ax — 2| h

We can attempt to solve these equations in a stationary state. Bearing in mind that
£, 8, h,are a factor Q7! smaller than x and y, this requires a to be of order Q! [this
also follows from the scaling requirements (7.5.29)]. Hence « is small. To lowest
order one has

x, =y, = l/a. (7.6.40)

But the equations for f, g, 4 in the stationary state then become

2¢g 2/a
h—f|=|—1/a (7.6.41)
—2g 2/a

§
which are inconsistent. Thus this method does not yield a stationary state. Alter-
natively one can solve all of (7.6.39) in a stationary state.
After some manipulation one finds

Xy =Y, (7.6.42)

8s = a—](xs - axi)

so that
fi=x(—2ax2+x,2—a)— 1)/ (2 — 2ax,) (7.6.43)
hy = x(—2ax? + x,2 + a) + /(2 — 2ax,)
and the equation for g, gives
—ax? +ax(f,—h)=0 (7.6.44)
giving a solution for x,, y,, etc.
X, =y =1
fo=taf(a— 2 (7.6.45)

& =12 — a)a
h,=—1/(a—2)
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and for small « in which the method is valid, this leads to a negative value for f;,
which is by definition, postive. Thus there is no stationary solution.

By again approximating x, = y, = 1/a, the differential equations for f, g, and 4
can easily be solved. We find, on assuming that initially the system has zero vari-
ances and correlations,

S =%l(cos 2t — 1) + 2;’

g(t) = — %Isin 2% (7.6.46)

1 , 2t
h(t) = -—2—a(COS 2t— 1)+ =z
Notice that f{¢) and Ah(t) are, in fact, always positive and increase steadily. The solu-

tion is valid only for a short time since the increasing value of g(¢) will eventually
generate a time-dependent mean.

7.6.4 Generating Function Equations

In the case of combinatorial kinetics, a relatively simple differential equation can be
derived for the generating function:

G(s,1) = Z (H ) P(x,1). (7.6.47)

For we note that
0,G(s, t) = 0;G(s, t) + 0:G(s, t) (7.6.48)

where the two terms correspond to the ¢+ and ¢~ parts of the master equation. Thus

SRS
_E[G—X!NW "“]P(x 1)} (7.6.49)

Changing the summation variable to x — r4 and renaming this as x, in the first
term we find

! "a+': a! x,
0G(s, t) = Azxk; [I;I (_x—f—g'N—‘)!s“ —1TII (xjm S, }P(x, t). (7.6.50)

a

Note that

H(xasj—ax;\;:)' II ( i ) s (1.6.51)
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and that
s%a*rax,! A 4
0o = wai— I (a:’a s:") s (1.6.52)
so that
3G(s,1) = ki (I,.I S i} s,’,”f) 3 G(s, 1) . (7.6.53)

Similarly, we derive a formula for d; G(s, t) and put these together to get

(k;' Mok — ks 13" Ges,¢) | (7.6.54)

a

2,665, ) = 53 (IT 52— 11 ¥

A a

which is the general formula for a generating function differential equation. We now
give a few examples.

a) An Exactly Soluble Model
Reactions: (4, B, C held fixed)

A+x* x4+ D N‘:SI,M‘=2;r‘=1

ki =k,A (7.6.55)
kr=0
k1
B+X? N2=1 M*=0;r*= —1
3
ki = kB (7.6.56)
k; = k,C.

Hence, from (7.6.54), the generating function equation is

0,G = (s* — 5)(k,40.G) + (1 — 5)(k,B80,G — k;CG) . (7.6.57
Solve by characteristics.

Set

kB=p,  kAd=a kC=y. (7.6.58

The characteristics are

dt ds dG

T T 0=9F—a) il —9G (7.6.59
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(ﬂl — e =u (7.6.60)

(B — as)’’'sG =v. (7.6.61)

The general solution can be written v = F(u), i.e.,

(7.6.62)

G=(f— as)-"aF[ew-ﬂn ( ﬁ‘ =

From this we can find various time-dependent solutions. The conditional probabi-
lity P(x, |y, 0) comes from the initial condition

G,(s,0) = s” (7.6.63)
> F2)=({ — fz)’(1 — az)?"'*>(f — a)'® (7.6.64)
— Ivla _ a—Any __ — —Ary]y
= G,(s, 1) = 2Bl — e7*) — s(a — pe™*)] (7.6.65)
X [(B — ae™) — as(l — e~*)]~ria~y
(with 1 = f — a).
As t — oo, a stationary state exists only if § > a and is
G,(s, 0) = (f — as)™"*(f — a)''* (7.6.66)
= P(x) = Tx + yja)al 7 (B—a)y'=. (7.6.67)

I'(y/a)x!

We can also derive moment equations from the generating function equations by
noting

a,G(J‘, t)|:=l = <X(t)>

(1.6.68)
B3G(s, )] smn = CX(O)x() — 1
Proceeding this way we have
L1 = (ke — kB + KsC (7.6.69)
and
L O() — 1) = 20kad — kB0 — 1]
+ 2k, A{x()) + 2k,C{x(2)) . (7.6.70)

These equations have a stable stationary solution provided
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koA < kB, ie, a<§p.

In this case, the stationary mean and variance are
(xDs = ksCl(k,B — k;A) (7.6.71)
var {x}, = k,k;BC/(k,A — k,B)*. (7.6.72)

This model is a simple representation of the processes taking place in a nuclear
reactor. Here X is a neutron. The first reaction represents the fission by absorption
of a neutron by 4 to produce residue(s) D plus two neutrons. The second re-
presents absorption of neutrons and production by means other than fission.

As k,A approaches k, B, we approach a critical situation where neutrons are ab-
sorbed and created in almost equal numbers. For k,4 > k, B, an explosive chain
reaction occurs. Notice that {x,» and var {x}, both become very large as a critical
point is approached and, in fact,

var{x} kB
. kB —Tod oo . (7.6.73)

Thus, there are very large fluctuations in {x,) near the critical point.
Note also that the system has linear equations for the mean and is Markovian,
so the methods of Sect. 3.7.4 (the regression theorem) show that
3

{x(t), x(0)>, = exp [(k,4 — k,B)t]var {x}, (7.6.74)

so that the fluctuations become vanishingly slow as the critical point is approached,
i.e., the time correlation function decays very slowly with time.

k
b) Chemical Reaction X; — X,

2
One reaction

el el L]

kt =k, ki=k (1.6.75)
atG(Sl’ $25 t) = (SZ - sl)(klaq - kZa:z)G(sl’ §25 t)

can be solved by characteristics. The generating function is an arbitrary function
of solutions of

dt _ ds, _ ds,
1 ki(s; — s1)  ka(ss — 51)°

(7.6.76)

Two integrals are solutions of

k.ds, + k.ds. = 0 = k.s, + k.s. = v. (7.6.77
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(ks + ke = 22 =)
o (7.6.78)
:> (sz_ sl)e—(k1+k2)l =u
= G(sy, Say 1) = Flkys, + kysy, (s, — sy)e” K1tk | (7.6.79)
The initial condition (Poissonian)
G(s1, 52, 0) = exp [a(s, — 1) + B(s; — 1)] (7.6.80)
gives the Poissonian solution:
K. — k
G(sl, Sa, [) = exp ._lz(fi__;_kz'_a (32 _ sl)e—(kﬁkz)/
a+ B .
+ k ¥k, [ki(sz — 1) + ky(s, — D]i. (7.6.81)

In this case, the stationary solution is not unique because x 4 y is a conserved
quantity. From (7.6.79) we see that the general stationary solution is of the form

G(s1, $2, ) = F(kys; + ky5,, 0) . (7.6.82)
Thus,
,0"G . 9"G
k? P k2 3ss (7.6.83)

which implies that, setting s, = s, = 1,

kixD s = k3dxp)s - (7.6.84)

7.7 The Poisson Representation [7.10]

This is a particularly elegant technique which generates Fokker-Planck equations
which are equivalent to chemical Master equations of the form (7.5.9).

We assume that we can expand P(x, t) as a superposition of multivariate uncor-
related Poissons:

a,

e "’X fla, 1). (1.1.1)

a
X

P(x,t) = [de I]
This means that the generating function G(s, ) can be written
G(s,t) = [ da exp [ (s, — Daf(a, 1). (7.7.2)

We substitute this in the generating function equation (7.6.54) to get
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3,6(5,1) = 3 | da [[H (a—‘z—a{- l)MaA_ H(ga—%-i- 1)~;‘]

X (k: IaI a, ‘- k3 l;I " "A) exp [g‘, (5. — l)a,,]l fle, t). (7.7.3)

We now integrate by parts, drop surface terms and finally equate coefficients of the
exponential to obtain

o0l (- 27l 2]

x [k,’;IﬂIa,,N“A—k; I o }f(a,z).

a) Fokker-Planck Equations for Bimolecular Reaction Systems
This equation is of the Fokker-Planck form if we have, as is usual in real chemical
reactions,

M2
a (1.7.5)
SINAL2

which indicates that only pairs of molecules at the most participate in reactions.
The FPE can then be simplified ‘as follows. Define the currents

T@) = kiTla — ks I] %, (1.7.6)
the drifts
A[J(@)] = 3] riJ (a), (7.7.7)

and the diffusion matrix elements by

Bp[J(a)] = 21T (@)(MIM{ — NINY — 6,,r7) . (7.7.8)

Then the Poisson representation FPE is

Yol - 512 (4@ e )
S (Bull@)f (@, 1)

(1.1.9)

Notice also that if we use the explicit volume dependence of the parameters given
in Sect 7572 (7 5720\ and define
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e = |V (7.7.10)
e= VY-l (7.7.11)

and F(n, t) is the quasiprobability in the # variable, then the FPE for the # variable
takes the form of

F - 2 2 o
P — o AP, 0] + 5 S BP0l (0712
with
Ayn) = 3 r2d () (1.7.13a)
OEE 11 e — I e (7.7.13b)
Bo(m) = S S (M)(MAM# — NAN{ — 68,.5r2). (7.7.13c)

In this form we see how the system size expansion in ¥~!/2 corresponds exactly to
a small noise expansion in 5 of the FPE (7.7.12). For such birth-death Master
equations, this method is technically much simpler than a direct system size ex-
pansion.

b) Unimolecular Reactions
If for all A4,

S Mi<1 and SINA<I,

then it is easily checked that the diffusion coefficient B,,(n) in (7.7.13) vanishes,
and we have a Liouville equation. An initially Poissonian P(x, #,), corresponds to a
delta function F(n, t,), and the time evolution generated by this Liouville equation
will generate a delta function solution, 8(y — #(t)), where #(¢) is the solution of

dn/dt = A(n)

This means that P(x, t) will preserve a Poissonian form, with mean equal to #(¢).
Thus we derive the general result, that there exist propagating multipoissonian
solutions for any unimolecular reaction system. Non Poissonian solutions also
exist—these correspond to initial F(y, t,) which are not delta functions.

¢) Example

As an example, consider the reaction pair

. ky
D) A+ Xe—=2X
ke (7.7.14)

. ky
ks
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N'=1, M' =2, ki=kA ki=k,
N*=1, M*=0, ki=kB, k; =kC

so that (7.7.4) takes the form

of [(1 B aaa)’ _ (1 _ %) ](sza — ke®) f

ot (1.7.15)

+[1 —(1 ——H(k Ba — k,C)f

of _

2
ot - aia[kzc + (kA — k\B)a — k,a?] + aaT‘/Z[sza — kot f (1.7.16)

which is of the Fokker-Planck form, provided k,Aa — k,a* > 0. Furthermore,
there is the simple relationship between moments, which takes the form (in the
case of one variable)

= S [ dala(x — 1) .o (x = r + l)e—;;f fl@)
= f da a'f(a) = {a") .

(7.7.17)

This follows from the factorial jpoments of the Poisson distribution (Sect. 2.8.3).
However, f(a) is not a probability or at least, is not guaranteed to be a probability
in the simple minded way it is defined. This is clear, since any positive superposi-
tion of Poisson distributions must have a variance at least as wide as the Poisson
distribution. Hence any P(x) for which the variance is less than that of the Poisson
distribution i.e., cannot be represented by a positive f(a).

A representation in terms of distributions is always possible, at least formally.
For if we define

fi(@) = (=16 (a)e?, then (7.7.18)
[ da fa)ea*/x! = | da a* (— ia) 8(a)/x! (1.7.19)

and integrating by parts
=0, (7.7.20)
which means that we can write

P(x) = | da(e'“a"/x!)[Zy (—=1) P(»)5*(a)e?] (7.7.21)

so that in a formal sense, an f(a) can always be found for any P(x).

The rather singular form just given does not, in fact, normally arise since, for
example, we can find the stationary solution of the FPE (7.7.16) as the potential
solution (up to a normalisation)
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fi(@) = e?(k,A — kya)*1B/ka—k3ClkaA=1) gk3Clkz A1 (1.1.22)

which is a relatively smooth function. However, an interpretation as a probability
is only possible if f,() is positive or zero and is normalisable.
If we define

o= (le/k4 - k;C/sz), (7-7-23)
then fi(a) is normalisable on the interval (0, k,4/k,) provided that

0>0 (7.7.24)
k; > 0.

Clearly, by deﬁnitionr: k; must be positive.

It must further be checked that the integrations by parts used to derive the FPE
(7.7.4) are such that under these conditions, surface terms vanish. For an interval
(a, b) the surface terms which would arise in the case of the reaction (7.7.14) can be
written

[{(k:4a — kea* — k,Ba + k;C)f — B,[(kra — kea®)f} {70} ]
+ [(k2a — kea®)f [(s — De ™). (7.7.25)

Because of the extra factor (s — 1) on the second line, each line must vanish separa-
tely. It is easily checked that on the interval (0, k,A4/k,), each term vanishes at
each end of the interval for the choice (7.7.22) of f, provided J and k; are both
greater than zero.

In the case where k; and § are both positive, we have a genuine FPE equivalent
to the stochastic differential equation

da = [kyC + (kA — k,B)a — ke?)dt + /ey da — Kua®)dW(t) . (1.7.26)

The motion takes place on the range (0, k,4/k,) and both boundaries satisfy the cri-
teria for entrance boundaries, which means that it is not possible to leave the
range (0, k,A/k,) (Sect.5.2.1).

If either of the conditions (7.7.24) is violated, it is found that the drift vector is
such as to take the point outside the interval (0, k,4/k,). For example, near @ = 0
we have

da ~ kyC dt (7.7.27)

and if k,C is negative, a will proceed to negative values. In this case, the coefficient
of dW(t) in (7.7.26) becomes imaginary and interpretation is no longer possible
without further explanation.

Of course, viewed as a SDE in the complex variable

a=a,+ia,, (7.7.28)

the SDE is perfectly sensible and is really a pair of stochastic differential equations
for the two variables @, and ,. However, the corresponding FPE is no longer the
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one variable equation (7.7.16) but a two-variable FPE. We can derive such a FPE
in terms of variations of the Poisson representation, which we now treat.

7.7.1 Kinds of Poisson Representations
Let us consider the case of one variable and write
P(x) = z!{ du(a)(e™*a*[x)f(a) . (7.7.29)

Then u(e) is a measure which we will show may be chosen in three ways which all
lead to useful representations, and & is the domain of integration, which can take
on various forms, depending on the choice of measure.

7.7.2 Real Poisson Representations
Here we choose
du(a) = da (7.7.30)

and & is a section of the real line. As noted in the preceding example, this represen-
tation does not always exist, but where it does, a simple interpretation in terms of
Fokker-Planck equations is possible.

7.7.3 Complex Poisson Representdtions

Here,
du(a) = da (7.7.31)

and 9 is a contour C in the complex plane. We can show that this exists under
certain restrictive conditions. For, instead of the form (7.7.18), we can choose

f@) = 2y_n'1 a e (7.7.32)

and C to be a contour surrounding the origin. This means that

1 I
Py(x) = 5= i %a" T (7.7.33)

By appropriate summation, we may express a given P(x) in terms of an f(a) given by
Sfl@) = L 22 P(y)eca Myt . (7.7.34)
2n 5

If the P(y)are such that for all y, y! P(y) is bounded, the series has a finite radius of
convergence outside which f(a) is analytic. By choosing C to be outside this circle of
convergence, we can take the integration inside the summation to find that P(x)
is given by
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P(x) = § da(e™a*/x))f(a). (7.7.35)
C

a) Example: Reactions (1) 4 + X==2X, 2) B+ X=—=C

We use the notation of Sect. 7.7 and distinguish three cases, depending on the
magnitude of 4. The quantity J gives a measure of the direction in which the reac-
tion system (7.7.14) is proceeding when a steady state exists. If § > 0, we find that
when x has its steady state value, reaction (1) is producing X while reaction (2)
consumes X. When & = 0, both reactions balance separately—thus we have
chemical equilibrium. When § < 0, reaction (1) consumes X while reaction (2) pro-
duces X.

i) 6 > 0:according to (7.7.24), this is the condition for f,(a) to be a valid quasipro-
bability on the real interval (0, k,4/k,). In this range, the diffusion coefficient
(kyAa — kqa?) is positive. The deterministic mean of a, given by

__ kA — kB 4 [(k;A — ki B)?* 4 4k;k,C]'2
«= 2k,

(7.7.36)

lies within the interval (0, k,A4/k,). We are therefore dealing with the case of a genu-
ine FPE and f,(a) is a function vanishing at both ends of the interval and peaked
near the deterministic steady state.

ii) 6 = 0: since both reactions now balance separately, we expect a Poissonian
steady state. We note that f,(e) in this case has a pole at @ = k,A4/k, and we choose
the range of « to be a contour in the complex plane enclosing this pole. Since this
is a closed contour, there are no boundary terms arising from partial integration
and P,(x) given by choosing this type of Poisson representation clearly satisfies
the steady state Master equation. Now using the calculus of residues, we see that

P(x) = °_x‘:"3 (7.7.37)
with
ag = sz/k4 .

ili) 6 < 0: when 6 < 0 we meet some very interesting features. The steady state
solution (7.7.22) now no longer satisfies the condition é > 0. However, if the range
of a is chosen to be a contour C in the complex plane (Fig. 7.3) and we employ
the complex Poisson representation, P,(x) constructed as

e %a”
x!

P(x) = £da fia) (7.7.38)
is a solution of the Master equation. The deterministic steady state now occurs
at a point on the real axis to the right of the singularity at « = k,A4/k,, and asymp-
totic evaluations of means, moments, etc., may be obtained by choosing C to pass
through the saddle point that occurs there. In doing so, one finds that the variance
of a, defined as
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Fig. 7.3. Contour C in the complex plane
for the evaluation of (7.7.38)
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var{a} = (&®) — (a)?, (7.7.39)
is negative, so that
var {x} = (x*) — () =) — {)? + {a) <<x) (7.7.40)

This means that the steady state is narrower than the Poissonian. Finally,
it should be noted that all three cases can be obtained from the contour C. In
the case where d = 0, the cut from the singularity at @ = k,A4/k, to —oo va-
nishes and C may be distorted to a simple contour round the pole, while if § > 0,
the singularity at @ = k,A/k, is now integrable so the contour may be collapsed
onto the cut and the integral evaluated as a discontinuity integral over the range
[0, k,A/k,). (When § is a positive integer, this argument requires modification).

b) Example: Reactions B Sy , 2K Lo,
For which the Fokker-Planck equation is

YD) 2 [y — 270, 0] — 2 GV e, 1], (1.7.41)

where «,V = kB, k,V~! = k, and V is the system volume. Note that the diffusion
coefficient in the above FPE is negative on all the real lines.
The potential solution of (7.7.41) is (up to a normalisation factor)

fl@) = a? exp Qa + aV?a) (7.7.42)

with a = 2k,[k, and the « integration is to be performed along a closed contour
encircling the origin. Of course, in principle, there is another solution obtained by
solving the stationary FPE in full. However, only the potential solution is single
valued and allows us to choose an acceptable contour on which partial integration
is permitted.

Thus, by putting @ = nV, we get

Vv § dn e¥@ntaim yr-2
§ d’7 eV(Z;]+alﬂ)'7—2

Xy = (7.7.43)

The function (2# + a/n) does not have a maximum at the deterministic steady
state. In fact, it has a minimum at the deterministic steady state # = + (a/2)'/2.
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However, in the complex » plane this point is a saddle point and provides the
dominant contribution to the integral.

Thus, the negative diffusion coefficient in (7.7.41) reflects itself by giving rise to a
saddle point at the deterministic steady state, which results in the variance in X
being less than (x).

From (7.7.43) all the steady states moments can be calculated exactly. The
results are

& =[r(5) ] i 7 (7.7.44)

where 1,(2(2a)!/2V) are the modified Bessel functions. Using the large-argument
expansion for 1,(2(2a)'?V), we get

xy = V(@@/2)!'? + + + O(1/V) (7.7.45)

var{x} = § V(a/2)'"* — X + O(1/V).

These asymptotic results can also be obtained by directly applying the method of
steepest descents to (7.7.43). In general, this kind of expansion will always be pos-
sible after explicitly exhibiting the volume dependence of the parameters.

c) Summary of Advantages

The complex Poisson representation yields stationary solutions in analytic form to
which asymptotic or exact methods are easily applicable. It is not so useful in the
case of time-dependent solutions. The greatest advantages, however, occur in
quantum mechanical systems where similar techniques can be used for complex P
representations which can give information that is not otherwise extractable. These
are treated in Chap. 10.

7.7.4 The Positive Poisson Representation
Here we choose & to be a complex variable a, + ia,,

du(a) = d*a = da.da, , (7.7.46)

and 9 is the whole complex plane. We show in Sect. 10.6.3 that for any P(x), a
positive f(a) exists such that

P(x) = [ d*a (e *a*/x)f(e) ; (7.7.47)

thus, the positive P representation always exists. It is not unique, however. For
example, choose

f(@) = (2no?)~ exp (— |a — ao|?/20%) (7.7.48)

and note that if g(a) is any analytic function of @, we can write

ga) = glay) + Z'::l g™ (a)(@ — ag)/n! (1.7.49)
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so that
[ @ro?)'d?aexp (— |a — a,|?[20%)g(@) = glao) , (7.7.50)

since the terms with n > 1 vanish when integrated in (7.7.50). Noting that the
Poisson form e~®a*/x! is itself analytic in a, we obtain for any positive value of ¢?

P(x) = [ d’a f(a)e™%a*[x! = e~®oag/x! . (7.7.51)

In practice, this nonuniqueness is an advantage rather than a problem.

a) Fokker-Planck Equations

We make use of the analyticity of the Poisson and its generating function to produce
Fokker-Planck equations with positive diffusion matrices. A FPE of the form of
(7.7.9) arises from a generating function equation

0,G(s, 1) = [d*a f(a, 1) (; A, a%a + ;?5‘ 3 B“”a-j,—;?&;) exp [;(s,— Da,). (7.7.52)

We now take explicit account of the fact that e is a complex variable
a=a, + i, (7.7.53)

and also write

Ale) = A.(a) + id/(a) . (7.7.54)
We further write :

B(a) = C(a)C(@) (7.7.55)
and

C(@) = Cu(@) + iCy(a) (7.7.56)

For brevity we use

0
9, = %,
«_ 0 '
%= g (1.7.57)
0
% = da, ,

Because of the analyticity of exp [D(s, — 1)a,], in the generating function equation

(7.7.52) we can always make the interchangeable choice
0, = 0X > —i0%. (7.7.58)

We then substitute the form (7.7.54) for B,;, and replace 9, by either 9 or —id?
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according to whether the corresponding index on 4 or C'is x or y respectively. We
then derive

3.G(s, 1) = [ d*a f(e, 1) {[3 (Aa;x0% + Aay)
+ % 2 (Ca.c.ch,b;xa:a: + Cn.c;ycc,b;yaiai
ab,c
+ 2C, ..C..5,,0303] €xp [3] (sa — Daul}. (7.7.59)
Integrating by parts and discarding the surface terms to get a FPE in the variables
(aJv a,v)’
arf(a9 t) = [_; (a;Aa;x"'azAa;y) + % a;C (azazca,c;xcc,b;x
+ 0505 Ca,ciyCebiy + 20505C0,cxCe,b M f (e 1) - (7.7.60)

In the space of doubled dimensions, this is a FPE with positive semidefinite
diffusion. For, we have for the variable (e,, a,) the drift vector

HAe) = [4,(e), 4,(a)] (7.7.61)
and the diffusion matrix
HB(a) = [C"CI C"C;} = F(@)F ()" (7.7.62)
¢c:  CCY
where
le) = F" O} (1.7.63)
¢ O

so that HB(e) is explicitly positive semidefinite.

b) Stochastic Differential Equation (SDE)
Corresponding to the drift and diffusion (7.7.61, 62) we have a stochastic differential
equation

{da, 4], [P0 .
da,,] _[A,(a)} * [cydWm} 7

where W(t) is a Wiener process of the same dimension as e,. Note that the same
Wiener process occurs in both lines because of the two zero entries ¥(a) as written
in (7.7.63).

Recombining real and imaginary parts, we find the SDE for the complex
variable a:

de = A(e)dt + C(e)dW(1) . (7.7.65)

This is of course, exactly the same SDE which would arise if we used the usual
rules for converting Fokker-Planck equations to stochastic differential equations
directly on the Poisson representation FPE (7.7.9), and ignored the fact that C(a)
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so defined would have complex elements if B was not a positive semidefinite diffu-
sion matrix.

¢) Examples of Stochastic Differential Equations in the Complex Plane
We again consider the reactions (sect. 7.7.b)

ki
A+ X=2X
(7.7.66)

The use of the positive Poisson representation applied to this system yields the
SDE, arising from the FPE (7.7.16):

da = [k;C + (kA — k\B)a — kea?ldt +[2k,Ada — ke®)|'2dW(r).  (1.7.67)

In the case J > 0, we note that the noise term vanishes at « = 0 and at
a = k,A/k,, is positive between these points and the drift term is such as to return
a to the range [0, k,A/k,] whenever it approaches the end points. Thus, for § > 0,
(7.7.67) represents a real SDE on the real interval [0, k,A4/k,].

In the case § < 0, the stationary point lies outside the interval [0, k,A4/k,], and
a point initially in this interval will move along this interval governed by (7.7.67)
until it meets the right-hand end, where the noise vanishes and the drift continues to
drive it towards the right. One leaving@the interval, the noise becomes imaginary and
the point will follow a path like that shown in Fig. 7.4 until it eventually reaches
the interval [0, k,A4/k,] again.

The case of § = 0 is not very dissimilar, except that once the point reaches the
right-hand end of the interval [0, k,4/k,], both drift and diffusion vanish so it re-
mains there from then on.

In the case of the system

B—X
2X— A, (7.7.68)

— VY v v

e PN . W...\ \

Fig. 7.4. Path followed by a point obeying the
stochastic differential equation (7.7.67)

Fig. 7.5. Simulation of the path of a point obeying
the stochastic differential equation (7.7.69) | 4
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the SDE coming from the FPE (7.7.41) is
dnldt = Kk, — 2ic,n* + 1e(Qrcy) VP0é(t) (7.7.69)
where a = nVand ¢ = V12,

The SDE (7.7.69) can be computer simulated and a plot of motion in the com-
plex n plane generated. Figure 7.5 illustrates the behaviour. The point is seen to
remain in the vicinity of Re {a} = (a/2)'/* but to fluctuate mainly in the imaginary
direction on either side, thus giving rise to a negative variance in a.

7.7.5 Time Correlation Functions

The time correlation function of a Poisson variable « is not the same as that for
the variable x. This can be seen, for example, in the case of a reaction X = Y which
gives a Poisson Representation Fokker-Planck equation with no diffusion term.
Hence, the Poisson variable does not fluctuate. We now show what the relationship
is. For clarity, the demonstration is carried out for one variable only.

We define

(a(t)e(s)) = [ du(@)du(a’)adf(a, t| ', s)f(, 5) . (7.7.70)
We note that

fla,s|d',5) = dla — o)
which means that

[ du(a) e=*(a*/x)f(a, 5|, 5) = e™*a’*/x! (7.7.71)
so that

[ du(a) af(@, 1|, 5) = X xP(x, 1], s)e™a'x'|x'!
Hence,

(a(ta(s)y = 3, xP(x, t| X', 5) [ duta Y@+ 'e™' [x')f(', 5)

— 5 xP(x, 1] ¥, 5) _[d,u(a’)[ (—a' ai + x') (a""e‘“'/x’!)] fid, )

= 3 xx'P(x, 1]x, )P(¥, 3) ) (1.1.72)
— [ du(e) fie, ) a%' T 0P (s, 11X, ) x1) (1.1.73)

We define
a(t)|[, 5]y = [daaf(a, t|d,s) (7.7.74)
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as the mean of a(¢) given the initial condition a’ at s. Then the second term can be
written

— [ i@ o )]s s, 5) = (o 2 (), 51 (1.7.79)
so we have
X = (alals)) + (@ 5 <alt) e, 51> ) (17.76)

Taking into account a many-variable situation and noting that

Cx(1)) = <a(t))  always,

we have

G0, 56> = <@, ) + (ah 3 D)l [as 5D (1.1.77)

This formula explicitly shows the fact that the Poisson representation gives a
process which is closely related to the Birth-Death Master equation, but not
isomorphic to it. The stochastic quantities of interest, such as time correlation
functions, can all be calculated bugare not given directly by those of the Poisson
variable.

a) Interpretation in Terms of Statistical Mechanics

We assume for the moment that the reader is acquainted with the statistical
mechanics of chemical systems. If we consider a system composed of chemically
reacting components A4, B, C, ..., the distribution function in the grand canonical
ensemble is given by

P(I) = exp {B[2 + 2". wxI) — E(N]}, (7.7.78)

where I is an index describing the microscopic state of the system, x,(I) is the
number of molecules of X; in the state I, E(I) is the energy of the state, y, is the
chemical potential of component X;, 2 is a normalization factor, and

B = 1/kT. (1.7.79)

The fact that the components can react requires certain relationships between the
chemical potentials to be satisfied, since a state  can be transformed into a state
J only if

vix(l) = Xvix(J), A=1273,.. (7.7.80)
i i

where v4 are certain integers. The relations (7.7.80) are the stoichiometric con-
straints.
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The canonical ensemble for a reacting system is defined by requiring

Z‘, vix,(I) = 14, (7.7.81)
for some 74, whereas the grand canonical ensemble is defined by requiring
3P vix) = 2 vixp) =4, (7.7.82)

Maximization of entropy subject to the constraint (7.7.82) (and the usual con-
straints of fixed total probability and mean energy) gives the grand canonical
form (7.7.78) in which the chemical potentials also satisfy the relation

o=kt (7.7.83)

When one takes the ideal solution or ideal gas limit, in which interaction ener-
gies (but not kinetic or internal energies) are neglected, there is no difference
between the distribution function for an ideal reacting system and an ideal nonre-
acting system, apart from the requirement that the chemical potentials be ex-
pressible in the form of (7.7.83).

The canonical ensemble is not so simple, since the constraints must appear ex-
plicitly as a factor of the form

IT 3032 vixd(D), 7] (7.7.84)

and the distribution function is qualitatively different for every kind of reacting
system (including a nonreacting system as a special case).

The distribution in total numbers x of molecules of reacting components in the
grand canonical ensemble of an ideal reacting system is easily evaluated, namely,

P(x) = exp [B(@ + 3 )] 3 T1 80xD), x] exp [—BE(D] (7.7.85)

The sum over states is the same as that for the canonical ensemble of an ideal non-
reacting mixture so that

PG) = explA(@ + S )] TT 1 (S exp [— BE) (17.36)

where E,(i) are the energy eigenstates of a single molecule of the substance 4. This
result is a multivariate Poisson with mean numbers given by

log{xiy = Bu; — log [ e~ PE] (7.7.87)

which, as is well known, when combined with the requirement (7.7.82) gives the
law of mass action.
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The canonical ensemble is obtained by maximizing entropy subject to the
stronger constraint (7.7.81), which implies the weak constraint (7.7.82). Thus,
the distribution function in total numbers for the canonical ensemble will simply
be given by

Px) o [IT 1 52 e#e0p] 528180 ux, 4. (1.7.89)

In terms of the Poisson representation, we have just shown that in equilibrium
situations, the quasiprobability (in a grand canonical ensemble) is

f(@)., = 8[a — eleq)] (7.7.89)

since the x space distribution is Poissonian. For the time correlation functions there
are two results of this.

i) The variables e(?) and a(s) are nonfluctuating quantities with values e(eq). Thus,

{a (1), als)).q=0. (7.7.90)

ii) The equilibrium mean in the second term is trivial. Thus,

x5 =} a—i— @0)lle, 5D | (7.7.91)

a'=a(eq) *

This result is, in fact, exactly that¥of Bernard and Callen [7.11] which relates a two-
time correlation function to a derivative of the mean of a quantity with respect to
a thermodynamically conjugate variable.

Consider a system in which the numbers of molecules of chemical species X,
X, ... corresponding to a configuration I of the system are x,(I), x,(1). ... and it is
understood that these chemical species may react with each other. Then in a grand
canonical ensemble, as demonstrated above, the equilibrium distribution function is

Z7N () exp ({3 pex () — E(D} [KT] (7.7.92)
with
Z(p) = exp (—2P), (7.7.93)

where Z(u) is the grand canonical partition function. As pointed out above, the

chemical potentials g, for a reacting system cannot be chosen arbitrarily but must

be related by the stoichiometric constraints (7.7.82) of the allowable reactions.
Now we further define the quantities

x| ] (7.7.94)

to be the mean values of the quantities x, at time ¢ under the condition that the
system was in a configuration 7 at time s. Then a quantity of interest is the mean
value of (7.7.94) over the distribution (7.7.92) of initial conditions, namely,
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<xb t‘[”’ S]> = ; <X,~, tl[‘]’ 5]>Z_l(”)
X exp k—lT[g wx,(J) — EQO- (1.7.95)

When the chemical potentials satisfy the equilibrium constraints, this quantity will
be time independent and equal to the mean of x; in equilibrium, but otherwise it will
have a time dependence. Then, with a little manipulation one finds that

I:kTaiu] <xi’ tl[”’ S]>:| = (x,-(t), x](s)>¢q . (7,7.96)

H=pleq)

The left-hand side is a reponse function of the mean value to the change in the
chemical potentials around equilibrium and is thus a measure of dissipation, while
the right-hand side, the two-time correlation function in equilibrum, is a measure
of fluctuations.

To make contact with the Poisson representation result (7.7.91) we note that the
chemical potentials 4, in ideal solution theory are given by

H({x>) = kT log {x;> + const . (7.7.97)

Using (7.7.97), we find that (7.7.96) becomes

xdt), x,(s)) = [<x1> a—<a;§ (xi, ] [(<xD), S])] . (7.7.98)

W= eq

Since the ideal solution theory gives rise to a distribution in x, that is Poissonian, it
follows that in that limit

o | [H(CXD), s = L, ][, 5] (7.7.99)

with o' = {x). Thus, (7.7.98) becomes

0, %5 = [ a% Gt D] (7.7.100)

a’=a(eq)

Thus, (7.7.91) is the ideal solution limit of the general result (7.7.98).

The general formula (7.7.77) can be considered as a generalization of the Bern-
ard-Callen result to systems that are not in thermodynamic equilibrium.

However, it is considerably different from the equilibrium result and the
two terms are directly interpretable. The second term is the equilibrium contribu-
tion, a response function, but since the system is not in a well-defined equilibrium
state, we take the average of the equilibrium result over the various contributing «
space states. The first term is the contribution from the a-space fluctuations them-
selves and is not directly related to a response function. It represents the fluctuations
in excess of equilibrium.
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b) Linearised Results
The general differential equation, arising from the use of the positive Poisson
representation, and corresponding to the FPE (7.7.12), is

dn = A(n)dt + eC(n)dW(z), (7.7.101)
where
CC*=B8B. (7.7.102)

We may now make a first-order small noise expansion about the stationary state
n by following the procedure of Sect.6.3. Thus, writing

nt)=dq+em(t) (e=V"? (7.7.103)

to lowest order we have

A@#) =0 (1.7.104)
dn, = —Fndt + G dW(t)
where
SR ¥e) (7.7.105)
rs a”‘ r ’I .
G = C(#) .
Then,
<ar(t)’ al(0)>s = V rZ [exP (—Ft)]rr' <'7r'.h ”:.l)s (7'7'106)
and
O, 0D = 50 C1.a(0) 113, O = [exp (— ). (7.7.107)
Hence,
<xr(t), xl(0)>s = V; [exp (—'Ft)]rr'[<’7r'.l, ’7:.!>: + 5r',sﬁl) (7'7'108)
= 23 exp (—F1), (X0, X, - (7.7.109)

Thus the linearised result is in agreement with the regression theorem of sect. 3.7.4
correlation functions for a variety of systems nave been computed in [7.10].

7.7.6 Trimolecular Reaction
In Sect. 7.1.3 we considered a reaction which included a part

A+2X—=—3X (7.7.110)
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and set up an appropriate birth-death Master equation for this. However, it is well
known in chemistry that such trimolecular steps are of vanishingly small probability
and proceed in stages via a short-lived intermediate. Thus, the reaction (7.7.110)
presumably occurs as a two-state system

1
) A+ Y—=X+7 (7.7.111a)

i v % 2, (7.7.111b)

both of which are merely bimolecular, and we have set rate constants equal to one,
except for y (the decay constant of Y) which is assumed as being very large. Thus,
Y is indeed a short-lived intermediate. The deterministic rate equations are

d
d—;( =ay — xy + 2yy — x?)

(7.7.112)
dy
a -

and the usual deterministic adiabatic elimination procedure sets y = x?/y and gives
— = (ax* — x%)/y . (7.7.113)

Although this procedure is straightfoward deterministically, it is not clear that
the stochastic Master equation of the kind used in Sect.7.1.3 is a valid adiabatic eli-
mination limit. The adiabatic elimination techniques used in Chap. 6 are not easily
adapted to direct use on a Master equation but can be straightfowardly adapted
to the case of the Poisson representation Fokker-Planck equation.

a) Fokker-Planck Equation for Trimolecular Reaction

For the reaction (7.7.110) with forward and backward rate constants equal to 1/y
to correspond to (7.7.113), the Poisson representation Fokker-Planck equation
becomes, from (7.7.4),

T-HL+2 L - Lwa—ans

(7.7.114)

and contains third-order derivatives. There is no truly probabilistic interpretation
in terms of any real stochastic process in a space, no matter what kind of Poisson
representation is chosen. The concept of third-order noise will be explained in the
next section, which will show how probabilistic methods and stochastic differential
equations can still be used.

b) Adiabatic Elimination
Using the rules developed in (7.4.9), the Fokker-Planck equation for the system
(7.7.111) with the correspondence



296 /. Master Equations and Jump Processes

o=~ aela— @B+ 208 — ]+ F 08— )
(1.7.115)

aZ ) aZ
+5§(?ﬂ—a)+m[(a — a)f].
Adiabatic elimination now proceeds as in Sect.6.6.1. We define new variables

X =a

7.7.116
and consequently, changing variables with
2_2 , 8
fr O > (7.7.117)
9_,0
ap~ "oy’
the FPE becomes
> ad §— 2
o G a) o,
P 3 (7.7.118)
9 9\(2 _,. 0 95, 9)(2 (g —
+ (5= 25) G — 23) ¥ + (5 — 2¢55) (55) 10 + ¥ — ] .

Since y is to be eliminated, there should be a well-defined limit of the L, operator
which governs its motion at fixed x. However, this operator is

d

2
5y + 367,[4ny —2x(y + x¥)(@ — x)] (7.7.119)

and the large y limit turns this into deterministic motion. Setting
y = vy 2 (7.7.120)

transforms( 7.7.119) to

2
) =7 [Zo + S200 = a) + (43 — 2]

aZ
=7 [aa—v v+ 55 2x(x — a)]}

=L, . (7.7.121)
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With this substitution, we finally identify

y 'Ly = —y! a% [x*(a — x)] (7.7.122)
Ly(y) = — a%[(a — X)vy~¥% 4 2uy~V?] — %2xaa—vv — Zx%a%v
+ y'”zaa—;v + y”2 d 6 [(a — x)(x? 4+ vy~ (7.7.123)
and
T Ly + LG) + 7L (7.1.124)

The projection operator P will be onto the null space of L, and because L, depends
on x, we have

L,P + PL;. (7.7.125)

This means that the equation of motion for Pf = g is found by similar algebra to
that used in Sect. 6.5.4. We find

s&(s) = y'PLyg(s) + P[Ly(y) + y~'Ls]ls — yLi— (1—P)Ly(»)—y'(1 — P)L,] ™!
X [Ly(y) + y~'(1 — P)L;]2(s) + g(0) . (7.7.126)
Notice, however, since for any function of v
Pg(v) = p(v) [ dv ¢(v) (1.7.127)
where p,(v) satisfies
Lip(v)=0, (7.7.128)

that in PL,(y), all terms with d/dv in them vanish. Thus, to highest order in y,

a ., ,2 ) (7.7.129)

PLy(y) = y~'/? ( g+ Vs

The term [ ]! in(7.7.126) is asymptotic to —y~'L! and the only term in the re-
maining bracket which can make the whole expression of order y~!, like the L,
term, is the term of order /% in Ly(p), i.e.,

(7.7.130)

F P
lIZ 2
y [(a — X)x ]B_v'

Thus, the large y limit of (7.7.126) is
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_ d 02 ., 0 d
s26) =y {PLg = P[=2 32 + 5oL [ @ — 0% 2 puo] + 20
(7.7.131)

where we have written

g=p)p, g&=p.(v)p. (7.7.132)
We are now lead to the central problem of the evaluation of

[ dvv'L7! 9 (@ — x)x? ip @) (7.7.133)

' oox o' o

which arises in the evaluation of the second part in the braces in (7.7.131). We wish
to bring the 9/dx to the left outside the integral, but since d/6x and L, do not com-
mute, this requires care. Now

[L,—‘,a%] o [a Ll} L (1.7.134)

Exa
and from (7.7.121),

2
. [ai"; [8x° — 6ax2]lL,“ ; (7.7.135)
¥

0 ‘ot - 0 ,
(7.7.133) = a—x_f dv'v'Li(a — x)xzﬁpx(v )
+ [ dv'v'Li? ksl L' [(8x® — 6ax*)(a — x)x’]i ') (7.7.136)
1 avlz 1 a,vlpz . ol

The second term vanishes, through the demonstration that this is so is rather speci-
alised. For, we know that L, describes an Ornstein-Uhlenbeck process in v and that
px(v) is its stationary solution. The eigenfunction properties used in Sect.6.4.2 show
that

LTt ki L! 9 v) (7.7.137)
1 avz 1 av px ol

is proportional to the third eigenfunction, which is orthogonal to v, the first eigen-

function of the corresponding backward equation. The first term is now easily

computed using the fact that L, involves the Ornstein-Uhlenbeck process. Using the

same techniques as in Sect.6.6.1, we find that all the x dependence arising from

p=(v") vanishes, and hence

(7.7.133) = a%(a — x)x*. (7.7.138)

We similarly find
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’ a 2 ’
PLig = —p.(0) [ dv' 5~ [xa — )|p.(v")p

= —p) 216 @~ V1P, (1.7.139)

so in the end
B _1[(_3 58 PV
oty [( x5 axs) (@ — x)x IP} (7.7.140)

which is exactly the same as the trimolecular model Fokker-Planck equation
(7.7.114). This means the trimolecular Master equation is valid in the same limit.

c¢) Comments

i) Notice that this system gives an end result which is not in a Stratonovich form
but in the Ito form, with all derivatives to the left.

ii) The derivation of (7.7.140) means that techniques for understanding such non-
probabilistic Fokker-Planck equations are required. We outline a possible way
of doing this in the next section.

7.7.7 Third-Order Noise

To handle the third-order Fokker-Planck equations which arise with trimolecular
reactions, we introduce the stochastic variable V(¢t) whose conditional probability
density p(v, t) obeys the third-order partial differential equation

ap(v, t)/ot = — § 3°p(v, t)[ov? . (7.7.141)

Since we have already shown in Sect.3.4 that no Markov process can possible give
a third-order term like this, some fundamental requirement must be violated by
p(v, t). It turns out that p(v, 1) is not always positive, which is permissible in a quasi-
probability. We will see that in spite of this, the formal probabilistic analogy is
very useful.

We know that the solution of (7.7.141), subject to the boundary condition

p(v, 1) = 3(v — v,), (7.7.142)
is given by Fourier transform methods as

p(, t|v,, to) = (1/2m) _oji dq exp {i[g(v — vo) + & ¢°(t — 1))} (7.7.143)

The moments of V can be calculated, after a partial integration, to be

AV (t) — Vo> =0, n not a multiple of 3
V(1) — Vo™ = (2 — 15)/6]"(3m)!/m! . (7.7.144)
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Further, we assume the process (7.7.141) is some kind of generalized Markov
process, for which the joint probability distribution is given by

p(vaty: vit)) = p(vatz | v:11)p(vs, 1) (7.7.145)

and from (7.7.142) we see that the first factor is a function of only », — v, and
t, — t,, so that the variable V(t,) — V(t,) is statistically independent of ¥(t,) and
that this process is a process with independent increments. Thus, dV(t) will be
independent of V(t).

The rigorous definition of stochastic integration with respect to V(¢) is a task
that we shall not attempt at this stage. However, it is clear that it will not be too
dissimilar to Ito integration and, in fact, Hochberg [7.12] has rigorously defined
higher-order noises of even degree and carried out stochastic integration with
respect to them. We can show, however, that a stochastic differential equation of
the form

dy(t) = a(y)dt + b(y)dW(t) + c(»)dV(t) (7.7.146)

[with W(¢) and V(¢) independent processes] is equivalent to a third-order Fokker-
Planck equation. It is clear that because W(t) and V(¢) are processes with inde-
pendent increments, y(t) is a Markov process. We then calculate

i O = Y@ _ - (dAE)"

fad (] t— to dtg—0 dto

, (7.7.147)

where y(t,) is a numerical initial value, not a stochastic variable. From (7.7.146),
y(t) depends on W(t") and V(¢’) for only ¢’ < t and, since dW(t) and dV(¢) are inde-
pendent of y(z), we find

dy(to)y = La[ (1) dto + Oly(t)> AW (t0)) + Ll ¥(t) D<AV (10)>
= (aly(t)]dty = aly(to)ldto (7.7.148)

because y(t,) is a numerical initial value. Similarly, to lowest order in dt,

dy(te)*y = bly(1)) AW (1,)*)

= b[y(t,))dt, (7.7.149)
{dy(t0)*y = c[y(to)’<dV(2)*)
= [y(t,)dt, . (7.7.150)

Thus, we find
lim [ (1) — Mo/t — 9] = al (1)
{l_fg [KI(®) — Yt [t — ta)] = bl y(t)] (7.7.151)
lim [Ip(1) — y(t)PH/(t — t)] = [y ()P’
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and all higher powers give a zero result. By utilising a similar analysis to that of
Sect.3.4, this is sufficient to show that y(¢) is a generalized diffusion process whose
generalized FPE is

5=~ a%["(”l’] t3 z[b(y)zpl a 2 letyp. (1.7.152)

We define a noise source {(¢) by

avi(t) = {(t)de, (7.7.153)
where

L@y = LBy =0 (7.7.154)

LDy = 8(r — 198" — 1) (7.7.155)

and higher moments can be readily calculated from the moments of d¥V(¢). The
independence of increments means that, as with the Ito integral, integrals that
have a delta-function singularity at their upper limit are to be taken as zero.

Example of the Use of Third-Order Noise. Consider the chemical process

k
A+ 2X — 3X (1.7.156)
ka
k3
A=
ks

whose Poisson representation FPE is

Pl — 2oyt — b e + sV — xaf(a; 1)
t da
+1 82[4(x,V g2 — 1,V %) f(a, 1)]
3. 3a 3[6(K- Vil — i,V fla, 1)], (7.7.157)

where i, V' = kA, .,V i =k, K,V ==k, k,=k,.

In the steady state, (7.7.157) reduces to a linear second-order differential equa-
tion which may be solved in terms of hypergeometric functions, and an asymptotic
expansion for the various moments can be obtained using steepest descent methods.
This procedure, although possible in principle, is not very practicable. It is in such
cases that the method of stochastic differential equations proves to be very useful
because of its ease of application.



302 7. Master Equations and Jump Processes

The stochastic differential equation equivalent to (7.7.157) is

dn(t)/dt = r\n(t)* — k(1) + k3 — Ken(t)
+ 12 {Aryn(t)* — rean(e)]}112(2)
+ i {6lrein(t)? — wan(e)’1}130() (7.7.158)
where @ = V¥, 4 = V"% and the noise source {(¢), henceforth referred to as the

“third-order noise”, has been defined in (7.7.153-155)
Equation (7.7.158) may be solved iteratively by expanding 5(t):

n(t) = no(t) + 12n:(t) + p*na(t) + 1ns(t) + 1ing(t) + pPno(t) + ... (7.7.159)

which, when substituted in (7.7.158), yields the deterministic equation in the lowest
order and linear stochastic differential equations in the higher orders which may
be solved as in Sect.6.2.

In the stationary state the results are

2ab
x> = Vito + ey + = = Vito + =5 + ... (7.7.160a)

X%y — (X2 = Vndy + [24nsnsy + 2{nsney + 1% — {ney? + {nsd] + ...
- V[z—"] + [2—8 ab 8oy omd 8—"2”J + ... (1.7.160b)

c 3 c; c c c
{(x — )Y = VI — 33> ney + 33> + oy + ...
_ V[Sc_a _ 12;2” n ,,0] . (7.7.160¢)

where a = k92 — kM3, b = 2K, — 3KaMo, ¢ = K4 — 210y + 3Kk,m3 and 7, is the
solution of the steady-state deterministic equation

King — Kap + K3 — Kaffo = 0. (7.7.161)

Here a few remarks are in order. The third-order noise {(¢) contributes to O(V!) to
the mean and to O(1) to the variance, but contributes to O(V) to the skewness
coefficient. If one is only interested in calculating the mean and the variance
to O(V), the third-order noise may be dropped from (7.7158) and the expansiou
carried out in powers of ¢ = V' ~!/2. Also note that as ¢ — 0, the variance and the
higher order corrections become divergent. This of, course, is due to the fact that in
this limit, the reaction system exhibits a first-order phase transition type behaviour.
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Reaction diffusion systems are treated in this chapter as a prototype of the host
of spatially distributed systems that occur in nature. We introduce the subject
heuristically by means of spatially dependent Langevin equations, whose inade-
quacies are explained. The more satisfactory multivariate master equation descrip-
tion is then introduced, and the spatially dependent Langevin equations formulated
as an approximation to this description, based upon a system size expansion. It is
also shown how Poisson representation methods can give very similar spatially
dependent Langevin equations without requiring any approximation.

We next investigate the consequences of such equations in the spatial and
temporal correlation structures which can arise, especially near instability points.
The connection between local and global descriptions is then shown. The chapter
concludes with a treatment of systems described by a distribution in phase space
(i.e. the space of velocity and position). This is done by means of the Boltzmann
Master equation.

8.1 Background

The concept of space is central to our perception of the world, primarily because
well-separated objects do not, in general, have a great deal of influence on each
other. This leads to the description of the world, on a macroscopic deterministic
level, by local quantities such as local density, concentration, temperature, electro-
magnetic potentials, and so on. Deterministically, these are normally thought of as
obeying partial differential equations such as the Navier-Stokes equations of
hydrodynamics, the reaction diffusion equations of chemistry or Maxwell’s equa-
tions of classical electromagnetism.

The simplest cases to consider are reaction diffusion equations, which describe
chemical reactions and which form the main topic of this chapter. In order to get
some feel of the concept, let us first consider a Langevin equation description for
the time evolution of the concentration p of a chemical substance. Then the
classical reaction-diffusion equation can be derived as follows. A diffusion current
Jj(r, t) exists such that

J(r,t)y= —Dv p(r, t) 8.1.1)

and (8.1.1) is called Fick’s law. If there is no chemical reaction, this current obeys
a conservation equation. For, considering an arbitrary volume V, the total amount
of chemical in this volume can only change because of transport across the bound-
ary S, of V. Thus, if N is the total amount in V,
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L[ &or pir,0) = — [dS-(r,) 812
Vv

= — i[’d’r v-jr,t).
Hence, since V is arbitrary,
0.p(r, 1) + ¥ -j(r, 1) =0. (8.1.3)
Substituting Fick’s law (8.1.1) into the conservation equation (8.1.3) we get
o.p(r,t) = Dv?p(r, t), (8.1.4)

the diffusion equation. Now how can one add fluctuations? First notice that the
conservation equation (8.1.3) is exact; this follows from its derivation. We cannot
add a fluctuating term to it. However, Fick’s law could well be modified by adding
a stochastic source. Thus, we rewrite

j(’,t):_DVP(’,t)+fd(",t)- (815)

Here, fu(r,t)is a vector Langevin source. The simplest assumption to make con-
cerning its stochastic properties is

falr, 1)) =0

and

Sadt, Dfa (', 1)) = Ky(r, £)0,8(r — r)3(t — 1), (8.1.6)

k]

that is, the different components are independent of each other at the same time
and place, and all fluctuations at different times or places are independent. This is
a locality assumption. The fluctuating diffusion equation is then

a,ﬂ(", t) = DVzp(l', t) - V'fd(r9 t) . (817)
Notice that
- for, O - fo(r', 1)) =V -V'[Ky(r, )3(r — #)]5(t — t') . (8.1.8)

Now consider including a chemical reaction. Fick’s law still applies, but instead
of the conservation equation we need an equation of the form

= g L& e, ) = — [dS-jr.0) + [ @r Flp(r, 1), (8.19)

where F[p(r, )] is a function of the concentration and represents the production
of the chemical by a local chemical reaction.
Hence we find, before taking fluctuations into account,

0:p(r, 1) + 7 -j(r, 1) = Flp(r, 1)] - (8.1.10)
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The production of the chemical by a chemical reaction does generate fluctuations,
so we can add to (8.1.10) a term f(r, ¢) which satisfies

fdr, 1)) =0

(8.1.11)
e, OFLF, 1)) = K(r, 1)3(r — r)3(t — 1)

which expresses the fact that the reaction is local (i.e., fluctuations at different points
are uncorrelated) and Markov (delta correlated in time). The full reaction-diffusion
chemical equation now becomes

3.p(r, 1) = DI*p(r, 1) + Flp(r, )] + g(r, 1) 8.1.12)

L

where
glr, 1) = —V-for, t) + f(r, 1) (8.1.13)

and

(g(r, )g(r, t'))=(K.(r—7,0)8(r—r)+V-V'[Kyr, 1)3(r—r")]} 8(t —1'). | (8.1.14)

The simplest procedure for turning a classical reaction diffusion equation into a
Langevin equation yields a rather complex expression Further, we know nothing
about K (r) or Ky(r), and this procedure is based on very heuristic models.

Nevertheless, the form derived is essentially correct in that it agrees with the
results arising from a more microscopic approach based on Master equations,
which, however, specifies all arbitrary constants precisely.

8.1.1 Functional Fokker-Planck Equations

By writing a stochastic partial differential equation such as (8.1.12), we immediately
raise the question: what does the corresponding Fokker-Planck equation look like?
It must be a partial differential equation in a continuously infinite number of
variables p(r), where r is the continuous index which distinguishes the various
variables. A simple-minded way of defining functional derivatives is as follows.
First, divide space into cubic cells of side / labelled i with position r,, and introduce
the variables

x, = Pp(r) (8.1.15)

and consider functions of the variables x = {x,}.

We now consider calculus of functions F(x) of all these cell variables. Partial
derivatives are easily defined in the usual way and we formally introduce the
functional derivative by

SEQ) _ iy 3F)

Sp(ry) — Um ax, (8.1.16)
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In what sense this limit exists is, in most applied literature, left completely unde-
fined. Precise definitions can be given and, as is usual in matters dealing with
functionals, the precise definition of convergence is important. Further, the
“obvious” definition (8.1.16) is not used.

The precise formulation of functional calculus is not within the scope of this
book, but an indication of what is normally done by workers who write such
equations is appropriate. Effectively, the functional derivative is formally defined
by (8.1.16) and a corresponding discretised version of the stochastic differential
equation such as (8.1.12) is formulated. Using the same notation, this would be

dx, =[5 Dyx, + F(x)) di + 3 2,dW (1) (8.1.17)

In this equation, D;; are coefficients which yield a discretised approximation to DF2.
The coefficients F and g are chosen so that

Flp(r,, 1)] = lim F(x)I=3 (8.1.18)
-0
glro 1) =lim I 3 2, dW (1) (8.1.19)
1-0 7

More precisely, we assume a more general correlation formula than (8.1.14), i.e.,

{g(r, g, 1)) = G(r, r)o(t — t'), (8.1.20)
and require ”
Glry 1)) = lim 170 3% Zuyu - (8.1.21)

In this case, the FPE for x, is
9,P(x) = =3, i{[D x, + 6,F(x)]P(x)} + ZL & gl P(x). (8.1.22)
t i ax‘ ijvy i) i o7 2 ax‘axj 1k& jk . A

Now consider the limit /> — 0. Some manipulation gives

P
op(r)
52

+} [[dr aF [W G(r, r')P(p)]. (8.1.23)

a.P(p) = — [ d°r {{DP*(r) + Flp(")]IP(p)}

P(p) is now a kind of functional probability and the definition of its normalisation
requires a careful statement of the probability measure on p(r). This can be done
[8.1] but what is normally understood by (8.1.23) is really the discrete version
(8.1.22), and almost all calculations implicitly discretise.

The situation is clearly unsatisfactory. The formal mathematical existence of
stochastic partial differential equations and their solutions has now been establi-
shed, but as an everyday computational tool this has not been developed. We
refer the reader to [8.1] for more information on the mathematical formulation.
Since, however, most work is implicitly discretised, we will mostly formulate
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matters directly in a discretised form, using continuum notations simply as a
convenience in order to give a simpler notation.

8.2 Multivariate Master Equation Description

8.2.1 Diffusion

We assume that the space is divided into cubic cells of volume AV and side length
1. The cells are labelled by an index i and the number of molecules of a chemical
X inside cell i is called x,. Thus we introduce a multivariate probability

P(x, 1) = P(x;, X3 .. 1) = P(x,, £, 1) . (8.2.1)

In the last expression, £ means the vector of all x’s not explicitly written.

We can model diffusion as a Markov process in which a molecule is transferred
from cell i to cell j with probability per unit time d,,x,, i.e., the probability of
transfer is proportional to the number of molecules in the cell. For a strictly local
description, we expect that d;; will be nonzero only when i and j are neighbouring
cells, but this is not necessary and will not always be assumed in what follows.

In terms of the notation of Sect. 7.5, we can write a birth-death Master equation
with parameters given by the replacements:

i J
N¢? =(0..0, 1,0,..0,0,0,...)
M) =(00, 0’ 03"'0’ 1’0’)

r” =@..0, —1,0,...0,1,0, ...) (8.2.2)
kip =d,
k(-‘,n = 0 .
Hence, the Master equation becomes
0.P(x,t) = > d,[(x, + DPE, x, + 1,x, — 1,1) — x,P(x,1)] . 8.2.3)

This equation is a simple linear Master equation and can be solved by various
means.
Notice that since

r(l./) — _r(j.l)

) — G,
N&» = MU0 |

(8.2.4)

we can also restrict to i > j and set k; , = d;;. From (7.5.15,18) we see that in
this form, detailed balance is satisfied provided

dydxs = djdxps - (8.2.5)
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In a system which is diffusing, the stationary solution is homogenous, i.e.,

(X = <x/>s'

Hence, detailed balance requires
dlj =l (826)

and (8.2.3) possesses a multivariate Poisson stationary solution.
The mean-value equation is

a {x (1)) =ij§ ré¢PE(x) — ti(x))]
= /}_.: (=64 + Ouw) dplx)

Hence,

a{x (1)) = ; )i — o ; di)<x,(2)) 8.2.7)
= ? D, {x,(1)) . (8.2.8)

8.2.2 Continuum Form of Diffusion Master Equation

Suppose the centre of cell i is located at r, and we make the replacement

x(0) = Pp(r, 1) s (8:2.9)
and assume that d;; = 0 (i, j not nearest neighbours)
=d (i, j adjacent).

Then (8.2.8) becomes, in the limit / — O,
0.{p(r, 1)) = DV*{p(r, t)) with (8.2.10)
D=1pd. (8.2.11)

Thus, the diffusion equation is recovered. We will generalise this result shortly.

a) Kramers-Moyal or System Size Expansion Equations

We need a parameter in terms of which the numbers and transition probabilities
scale appropriately. There are two limits which are possible, both of which corres-
pond to increasing numbers of molecules:

i) limit of large cells: / — oo, at fixed concentration;
ii) limit of high concentration at fixed cell size.

The results are the same for pure diffusion. In either case,
th(x) — o0 (8.2.12)

and a system size expansion is possible. To lowest order, this will be equivalent to
a Kramers-Moyal expansion. From (7.5.31,32) we find
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AI(I) = E Djlxj (8213)
J
Blm(x) = 5lm Zj (Dljxl + Djlxj) - Dlmxl - Dmlxm ’ (82'14)
where
D, =d; —d, %‘. dik (8.2.15)

and thus, in this limit, P(x, t) obeys the Fokker-Planck equation

0P = —S0A(DP + } 3 00,Bm(x)P . (8.2.16)

b) Continuum Form of Kramers-Moyal Expansion
The continuum form is introduced by associating a point » with a cell i and writing

? 2_—>J'd3r 8.2.17)
Djj—D(r,ry= (@', r—r) (8.2.18)
1736, —8(r — r'). (8.2.19)

At this stage we make no particular symmetry assumptions on D,,, etc, so that
anisotropic inhomogeneous diffusion is included.

However, there are some requirements brought about by the meaning of the
concept “diffusion.”

i) Diffusion is observed only when a concentration gradient exists. This means that
the stationary state corresponds to constant concentration and from (8.2.13,15),
this means that

; D,=0, (8.2.20)
ie.,

; d; = Z]: d. (8.2.21)
Note that detailed balance (8.2.6) implies these.
i) Diffusion does not change the total amount of substance in the system, i.e.,

d
ZEE=0 (8.2.22)

and this must be true for any value of x;. From the equation for the mean values,
this requires

> Dy =0 (8.2.23)

which follows from (8.2.15) and (8.2.21)
iii) In the continuum notation, (8.2.20) implies that for any r,
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[d*6 2(r+6,—0)=0 (8.2.24)
and from (8.2.23), we also have

[d*6 D(r,8)=0. (8.2.25)

iv) If detailed balance is true, (8.2.24) is replaced by the equation obtained by
substituting (8.2.6) in the definition of D, i.e.,

D,=D, (8.2.26)
which gives in the continuum form
D(r + 6, —06)=D(r,9). (8.2.27)

The derivation of a continuum form now follows in a similar way to that of the
Kramers-Moyal expansion.
We define the derivate moments

M(r) = [ d*6 6 (r, 8) (8.2.28)
D(r) =} [ d*6 86 (r, §) (8.2.29)

and it is assumed that derivate moments of higher order vanish in some appro-
priate limit, similar to those used#in the Kramers-Moyal expansion.
The detailed balance requirement (8.2.27) gives

M(r) = [d*6 6D(r + 6, —9)
= [d*6 6[D(r, —0) + 6-VD(r, —0) + ..] (8.2.30)
= —M(r) +2p-D(r) + ....

Hence, detailed balance requires

M(r) =V -D(r). (8.2.31)
The weaker requirement (8.2.24) similarly requires the weaker condition

V.- IM(r)y —v-D(r)]=0. (8.2.32)
We now can make the continuum form of 4,(x):

Af(x) — [ d°6 D(r, 6)p(r + 0)
= M(r)-Vp(r) + D(r): PV p(r) (8.2.33)

If detailed balance is true, we can rewrite, from (8.2.31)

Ax)=V-[D(r)-Vp(r)] . (8.2.34)




8.2 Multivariate Master Equation Description 311

The general form, without detailed balance, can be obtained by defining

J(r) = M(r) — V- D(r) (8.2.35)
from (8.2.32)
v-Jir) =0 (8.2.36)

so that we can write

J(r)=V-E(r), . (8.2.37)
where E(r) is an antisymmetric tensor. Substituting, we find that by defining

H(r) = D(r) + E(r) , (8.2.38)
we have defined a nonsymmetric diffusion tensor H(r) and that

A(x) — 7+ [H(r)-7p(r,1)] . (8.2.39)

This means that, deterministically,

acp(r, t) = 7 -[H(r)-¥ p(r, 1)] (8.2.40)

where H(r) is symmetric, if detailed balance holds.
We now come to the fluctuation term, given by (8.2.14). To compute B,,(x),
we first consider the limit of

P 3 Bingm — [ dr' B(r, r)§(r’) (8.2.41)

where ¢, is an arbitrary function. By similar, but much more tedious computation,
we eventually find

r ; B — —20 - [D(r)p(r) - ¥ $(r)] (8.2.42)
so that
B(r, r') =27V : [D(r)p(r)d(r — r)]. (8.2.43)

The phenomenological theory of Sect. 8.1 now has a rational basis since (8.2.43)
is what arises from assuming
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jr, 1)y = —H(rp(r, 1) — &(r, 1) (8.2.44)
in which

&(r, D&, 1)) = 28(t — t')D(r)d(r — r')p(r) (8.2.45)
and hence,

op(r,t)=V-H(r)-Vp+V-&r,t). (8.2.46)

This corresponds to a theory of inhomogeneous anisotropic diffusion without
detailed balance. This is usually simplified by setting

D(r) = D1 (8.2.47)

and this gives a more familiar equation. Notice that according to (8.2.45), fluctua-
tions in different components of the current are in general correlated, unless D
is diagonal.

Comparison with Fluctuation-Dissipation Argument. The result (8.2.43) can almost
be obtained from a simple fluctuation-dissipation argument in the stationary state,
where we know the fluctuations are Poissonian. In that case,

Xy X = (xdy; (8.2.48)

corresponding to
g(r, r') = {p(r), p(r')y = 8(r — ¥)<p(r) .

Since the theory is linear, we can apply (4.4.51) of Sect. 4.4.6. Here the matrices
A and AT become

A— —V-H(r)-v
AT — —p'-H(r)-V' . (8.2.49)
Thus,

B(r, ') — BBT

(8.2.50)
= Ao + oA —[—V -H(r)-v — V'-H(r')-V']g(r, r) .

We note that in the stationary state, {p(r)) = {p), independent of r. Thus,

B(r, ) = [—V-H(r)-7{p>S(r — ') — 7"-H(")- 7' {p)s(r — )]
= pv': {[H(r) + H'(N)p>d(r — r)} (8.:2.51)
= 277" [D(r)<p>d(r — r)].

However, this result is not as general as (8.2.43) since it is valid in the stationary
state only, nor is it the same in the stationary state because it includes (p), not
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p(r). However, since the Fokker-Planck formalism is valid only as a large cell size
limit in which fluctuations are small, to this accuracy (8.2.51) agrees with (8.2.43)

8.2.3 Reactions and Diffusion Combined

We introduce reactions by assuming that molecules within a cell react with each
other according to a Master equation like those of Chap. 7. We wish to consider
several chemical components so we introduce the notation

X=(x, x5 ...) (8.2.52)

where x, represents a vector whose components x; , are the numbers of molecules
of species X, in cell i. Thus, we write

a.P(X, t) = 9,P(diffusion) + 3} {; ti(x, — rYP(x, — r4, X)
+ 13(x + rP(x, + 4 X) — [ti(x) + 1a(x)IP(X)} (82.53)

where the diffusion part has the form of (8.2.3), but is summed over the various
components.

This leads via a Kramers-Moyal expansion to a Fokker-Planck equation, with
the usual drift and diffusion as given by (7.5.32).

We can write equivalent stochastic partial differential equations in terms of a
spatially dependent Wiener process W(r, t) as follows: we consider an isotropic
constant diffusion tensor

D(r) = D1 (8.2.54)
dp. = [DuF?p, + X rie s T1 pYs — x5 T1 pYo))dt + dW.(r, 1) (8.2.55)
A a a
with

AW (r, AW (r', 1) = (20,47 - PIDup()S(r — )]
+ 8 — r) 3 rdrg e T o+ 0ca 1 Yy dr . (8.2.56)

The validity of the Langevin equation depends on the system size expansion.
Equations (8.2.55,56) depend on the particular scaling of the chemical rate constants

with Q, given in Sect. 7.5.3 (7.5.29). The only interpretation of € which is valid in
this case is

Q = I* = volume of cell.

Notice, however, that at the same time, the diffusion part scales like / since /2d must
remain equal to the diffusion coefficient while the terms arising from chemical
reactions scale like /3. This means that as cell volume is increased, we have less and
less effect from diffusion, but still more than the correction terms in the chemical
part which will be integral powers of /° less than the first.
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The precise method of comparing diffusion with reaction will be dealt with
later.

Example: X,=—2X,: for this chemical reaction, we find (using the methods of
Sect. 7.5)

el o)

k* =k =,Q'", kT =k, =k, Q7.
Thus, substituting

dp\(r) = (D\P?p, — K1py + Kyp3)dt + dWi(r, t)

(8.2.58)
dpy(r) = (Do ps + 2K1py — 2i,p3)dt + dWo(r, t)

where dW(r, t)YdWT(r', t) =
27 -¢'[Dyp,8(r—r)] + d(r—r)xipy + Kk2p3l, —20(r—r)xipy + K2pl

—=28(r—r)K1p) + K2p3), 20 -V'[D2p8(r—r)] + 43(r—r')x,py + K2pa)
(8.2.59)

This equation is valid only as a system size expansion in 27, that is, the cell size,
and the continuum limit is to be regarded as a notation in which it is understood that
we really mean a cell model, and are working on a sufficiently large scale for the
cell size to appear small, though thé cell itself is big enough to admit many mole-
cules.

Thus, this kind of equation is really only valid as a linearised equation about
the deterministic state which is the form in which Keizer [8.2] has formulated
chemical reactions. In this respect, the Poisson representation is better since it gives
equations exactly equivalent to the Master equation.

8.2.4 Poisson Representation Methods

Corresponding to a reaction with no more than bimolecular steps, we have from
(7.7.9) a rather simplified Fokker-Planck equation since for the spatial diffusion
[using the formulation (8.2.2)], we find the diffusion matrix vanishes. The genera-
lisation to a spatially dependent system is then carried out in the density variable

1a(r) = a,(r)/P (8.2.60)

and we find

dn(r) = (D7) + 3 rdes TL b — ko IL k)Mt + dW,(r, 1) (8261

AW (v, AW (¥, 1) = dt S(r—r') S TT 7 — 13 T1 7™%%)
A a a
X (MIM§ — NoN§ — d,rd) . (8.2.62)



8.3 Spatial and Temporal Correlation Structures 315

These equations are very similar to (8.2.55,56). When explicitly written out they
are simpler. For example, considering again X, == 2 X,, we get

dm(r) = (DWW — ki + Kand)dt + dW(r, t) (8.2.63)

dny(r) = (D, + 2k, — 2im3)dt + dWo(r, t) (8.2.64)
0 0

dW(r, tYdW7(r', t) = {0 2} (i — Kkon3)d(r — r)dt . (8.2.65)

The simplicity of (8.2.63-65) when compared to their counterparts (8.2.57, 58)
is quite striking, and it is especially noteworthy that they are exactly equivalent
(in a continuum formulation) to the Master equation.

8.3 Spatial and Temporal Correlation Structures

We want to consider here various aspects of spatial, temporal and spatio-temporal
correlations in linear systems, which are of course all exactly soluble. The correla-
tions that are important are the factorial correlations which are defined in terms of
factorial moments in the same way as ordinary correlations are defined in terms
of moments. The equations which arise are written much more naturally in terms
of factorial moments, as we shall see in the next few examples.

k
8.3.1 Reaction X —= Y
ka

We assume homogenous isotropic diffusion with the same diffusion constant for

X and Y, and since both the reaction and the diffusion are linear we find Poisson

representation Langevin equations for the concentration variables », u (correspond-

ing, respectively, to X and Y) with no stochastic source, i.e.,
an(r, t) = DV’n — kin + kyp

8.3.1)
ou(r,t) = Dv*u + kin — kyu .

a) Spatial Correlations
We now note that

{n(r, 1)) = {pa(r, 1))

Culr, 1)) = {p,(r, 1)) (8.3.2)
{n(e,t), (s 1)) = {pu(r,1), pu(r's 1)) — 3(r — r')p,(r, 1)) = g(r, 7, 1)
{n(e,t), (s 1)y = (pu(rt), p(r', 1)) = f(r, r', 1)

<u(rt), p(r', 1)) = {py(r,t), pr', 1)) — 8(r — F)p,(r, 1)) = h(r,r', 1),

which are all continuum notation versions of the fact that the Poissonian moments
are equal to the factorial moments of the actual numbers.
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The equations for the mean concentrations are obviously exactly the same as
(8.3.1). Assuming now a homogeneous situation, so that we can assume

palr, 1)) = Lp(t))
$py(r, 1)) = Lpy (1))

g(r, rl, t) = g(r - r,, t) (833)
f(r, l',, t) =f(r—rlv t)
hr, P, t)=h(r—r,t)

and compute equations of motion for {n(r, t)n(0, t)), etc, we quickly find

(’%ﬂ = 2DV%g(r, t) — 2k,g(r, t) + 2k, f(r, t)
af(ar; 1 _ 2DP(r, t) — (ky + k)f(r, t) + koh(r, t) + kig(r, t) (8.3.4)
Q,l(art—"t—)= 2DV*h(r, t) — 2k,h(r, t) + 2k, f(r, 1),

The stationary solution of these equations has the form
g(r) =&k, f(r) = &kik,, h(r) = &k? (8.3.5)

where ¢ is an arbitrary parameter. The corresponding stationary solutions for
the means are }

Xy = Ak, MRy = 2k (8.3.6)

where A is another arbitrary parameter. If £ = 0, we recover the Poissonian situa-
tion where

{pa(r), pu(r)) = {pu(r)) &(r — 1)
{py(r), py(r)) = {p,(r)) 8(r — 1) (8.3.7)
<px(r)’ Py("'» =0.

(By choosing other values of A, different solutions corresponding to various distri-
butions over the total number of molecules in the system are obtained).

Time-dependent solutions for any initial condition can easily be developed.
In the case where the solutions are initially homogeneous, uncorrelated and Pois-
sonian, (8.3.7) is satisfied as an initial condition and thus f, g, and A are initially
all zero, and will remain so. Thus, an uncorrelated Poissonian form is preserved in
time, as has already been deduced in Sect. 7.7b.

The problem of relaxation to the Poisson is best dealt with by assuming a speci-
fic form for the initial correlation function For example, an initially uncorrelated
but non-Poissonian system represented by

gr,0) =ad(r), f(r,0)=Bor), A, 0)=ydr). (8.3.8)



Time-dependent solutions are

g(r, t) ke, — 2k, e,e™ 1¥kDr | g e 2tk
fir, 1) | = e"‘(’—égﬁ——’:;ff’) kikag, + (ky — kyese™t1tDr — ge-2tatkor | (8.3.9)
h(r, t) kig, + 2k g,ekrtkoe | g em20atko)e
where
& = (a + 28 + p)/tk, + k2)?
& = [k(B + v) — kila + B)I/(ky + ko) (8.3.10)

&y = [kla 4 Ky — 2kk,p)/(k, + ky)*.

Comments

i) The terms ¢,, &,, and &; correspond, respectively, to deviations from an uncorre-
lated Poissonian of the quantities {(x; + y.), (x; + ¥,)0, {(xi + o), 1y, — kax))),
and {(k\y; — k;x)), (kiy; — k,x,)), which are essentially density fluctuations,
correlation between density fluctuation and chemical imbalance, and fluctuations
in chemical imbalance. We notice a characteristic diffusion form multiplying a
chemical time dependence appropriate to the respective terms.

i) The time taken for the deviation from a Poissonian uncorrelated form given by
(8.3.8) to become negligible compared to the Poissonian depends, of course, on the
magnitude of the initial deviation. Assuming, however, that «, 8, y, {x;>, and
{y;y are all of comparable size, one can make a rough estimate as follows. We
consider a small spherical volume of radius R much larger, however, than our
basic cells. Then in this small volume V, we find that

var (x[V, O]} = [ d°r [ d*F {pr, 0), p(r', 0)), e,

var {x[V, 0]} = X[V, 0]) + aV (8.3.11)
and similarly,

var {(y[V, 0} = (y[V, O + »V

[V, 01, yV, 0 = BV
while after a time ¢ > R?/4D, these quantities satisfy approximately

var {x[V, t]} = [V, ]

2
+ @%ﬂm(k%sl — 2kae,e” W1tk | grem 2t

var {y[V, t]} = OV, t])

2

V. V. 1 = ot

X [klkzsl + (kz — kl)sze—(k1+k2)! . 836—2(k|+k2)1] .



31y ¥. dpatially Distributed dystems

Thus, the diffusion has reduced the overall deviation from Poissonian uncorrelated
behaviour by a factor of the order of magnitude of R3/(Dt)*/2. However, notice
that in the case of an initial non-Poissonian, but also uncorrelated, situation,
corresponding to f = 0, we find that a correlation has appeared between X and Y,
which if the chemical rate constants are sufficiently large, can be quite substantial.

b) Space-Time Correlations

Since the equations of motion here are linear, we may use the linear theory devel-
oped in Sect. 3.7.4. Define the stationary two-time correlation matrix G(r, t) by

G(r. 1) = [(px(r, 1), px(0, 00>, <p,(r, 1), p.(0, 0)>] . 83.13)
$ps(r, 1), p)(0, 0>, <p,(r, 1), p,(0, 0))
Then the equation corresponding to (3.7.63) is
o= kK G(r, t 8.3.14
‘~("’)_[k. DVz_kj~(" ). (83.14)

The solution can be obtained by Fourier transforming and solving the resultant
Ist order differential matrix equation by standard methods, with boundary condi-
tions at ¢t = 0 given by (3.3.7). The result is

_ (Lp> + {py\exp (—r*/4Dt)
¢, 1) ‘( (k, + K»)? ) (@nDr)"

g + kikeyem e ¥ k(1 — e= %) (8.3.15)
kiky(1 — e~ ktkadry k2 4 ko k,e~ Ktk
If we define variables
n(’f t) = Px(", t) + py(ry 1) (8316)
e(r, 1) = [kipr, 1) — kop(r, D)/ (ky + k) , (8.3.17)
the solution (8.3.15) can be written as
. exp (—r%/4Dt)
<n(r, 1), n(0, 0)y, = <np, T @rDryE (8.3.18)
Sn(r, 1), (0, 0)), = {c(r, 1), n(0, 0)), = O (8.3.19)
2
e, 1), <0, 0)>, = k\ky<ny, exp(—r /4Dt)e-(lq+kz)¢_ (8.3.20)

(ki + ko)*  (4nDt)*?

The variables » and ¢ correspond to total density and chemical imbalance density,
i.e., {¢), = 0. Thus we see that (8.3.18) gives the correlation for density fluctua-
tions which is the same as that arising from pure diffusion: (8.3.20) gives the
correlation of fluctuations in chemical imbalance, and (8.3.19) shows that these are
independent. A characteristic diffusion term multiplies all of these. The simplicity
of this result depends on the identity of diffusion constants for the different species.
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k
8.3.2 Reactions B+ X —C, A + X —2X
ks 2

This reaction has already been treated in Sect. 7.6.4a without spatial dependence.
We find the Poisson representation equation for the concentration variable »(r, t)
is [from (8.2.60-62), (7.6.55,56)]

dn(r, t) = [DP?n(r, t) + (K, — K)n(r, t) + Ks]dt + dW(r, 1) (8.3.21)

dW(r, t)dW(r', t) = 2dt 5(r — r')Kyn(r, t), (8.3.22)
where

k3C == K313

k,B = K, (8.2.23)

sz = Kz .

This system can be solved exactly since it is linear, but since the second reaction
destroys X at a rate proportional to X, we do obtain a noise term in the Poisson
representation.

[In the Kramers-Moyal method, we would find an equation of the same form
as (8.3.21) for p(r, t), but the dW(r, t) would satisfy

dW(r, 1) dW(r', t) = dt 27" -7 [Dp(r)d(r—r’)]
+ 8(r—r)(K, + Kin(r, t) + K;]}] . (8.3.24)

a) Spatial Correlations
Define now

g(r, l',, t) = <p(l‘, t)’ P("', t)> - 8(' - "I)<P(’, t)>
= (n(r, 1), n(r', 1)) = {ne, O, 1)) — {ne, X', 1)) (8.3.25)
We consider the stationary homogeneous situation in which clearly
{n(r, 1)), = p(r, 1)) = {p)s - (8.3.26)
Then,
dg(r, v, 1) = dln(r, )n(r', 1))
= Ln(r, )dn(r', 1)) + Ldn(r, On(r’ 1)) + Ldn(r, t)dn(r, 1)) (8.3.27)
and using the usual Ito rules and (8.3.21,22),
= [DP* + DV + 2K, — K\)n(r, O)n(r', 1))
+ 2K3{p).dt + 2K,d(r — r){p).dt . (8.3.28)

Note that
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{p>s = Ks[(K, — K3) (8.3.29)

and that in a spatially homogeneous situation, g(r, r’, t) can only be a function of
r — r’, which we call g(r, t).
Substitute using (8.3.25,26) to obtain

0.g(r, t) = 2[DP* + (K, — K))lg(r, t) + 2K;{p),3(r) . (8.3.30)

The stationary solution g,(r) is best obtained by representing it as a Fourier inte-
gral:

g(r) = [d*qe 'tz (q) (8.3.31)

which, on using

5(r) = n)~ [ d’g e, (8.3.32)
gives
2.q) = K22 1 (8.3.33)

(2r)* Dg* + K, — K,

whose inverse is given by

g,(r) = %f—g;’-exx) [—r (1%15_2) ”2] - (8.3.34)

Hence,

{p(r, 1), P("', 1), = 8(r — rl)<p>s

__Kulpds [_ ) [Kl - Kz]uz]
+ @iy =7 P | TIr =T ] 8339

Comments

i) We note two distinct parts: a § correlated part which corresponds to Poissonian
fluctuations, independent at different space points, and added to this, a correlation
term with a characteristic correlation length

I.= /DK, =K, . (8.3.36)

i) Approach to equilibrium: when K,— 0, we approach a simple reversible reac-
tion B + X = C; one sees that the correlation in (8.3.34) becomes zero. However,
the correlation length itself does not vanish.

iii) Local and global fluctuations: a question raised originally by Nicolis [8.3] is
the following. Consider the total number of molecules in a volume V:

XV, t] = [ d% p(r, 1) . (8.3.37)

Then we would like to know what is the variance of this number. We can easily see
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var{x(V)}, = j'd’rj'd’r’(p(r ), p(r', 1)), (8.3.38)
and using (8.3.35),

= (V) + K2<p>* I d’r _[ dr’'lr—r|exp(—|r—r|/L) (8.3.39)

We can compute two limits to this. If ¥ is much larger than /?, then, noting that
g(r) — 0 as r — oo, we integrate the stationary version of (8.3.30) and drop the
surface terms arising from integrating the Laplacian by parts:

— 2Ky — K) [ @r [ gl — 1) + 2Kalpd, [ ¥ (8.3.40)
Thus,
[[drdr g — )~ fb. (8.3.41)
so that
var (x(V)}, ~ %?: > D). (8.3.42)

The small volume limit is somewhat more tricky. However, for a spherical volume
of radius R < /., we can neglect the exponential in (8.3.39) and

R
[fdrd?r|r—7r |7 =[dF _[ 4nridr d(cosO)(r? + r'* — 2rr'cos@)''?
Vv | 4

—j’d’rj'@dr(lr+r|—|r—r| (8.3.43)
— 2R3 (@n)/5
so that
var (x(V)}, ~ (x(V)). (1 4+ Kz) ( - —;‘-nm < Iz). (8.3.44)

Hence, we see in a small volume that the fluctuations are Poissonian, but in a large
volume the fluctuations are non-Poissonian, and in fact the variance is exactly
(7.6.72) given by the global Master equation for the same reaction.

In fact, for an arbitrary spherical volume, the variance can be evaluated directly
(by use of Fourier transform methods) and is given by

var {x(V)} = <x(V)>[1 +;Il§’£,§[1 _ (%)24‘ %-(15)3
_ o2 (1 n ZI‘L) ’]] (8.3.45)

and this gives the more precise large volume asymptotic form
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K, 3K ) s, (8.3.46)

var (N} ~ <O (52 %~ 3rk, =&y

The result can also be illustrated by noting that the Fourier representation of
{p(r, 1), p(r', 1)) is given by adding those of g,(r) and 3(r){p), and is clearly

- Dq* + K,
3
{pys(2m) D@+ K —K, (8.3.47)
This means that for small ¢, i.e., long wavelength, this is approximately

{py«(2m)~2 X (8.3.48)

s KI - Kz )

which is the Fourier transform of

>R s — ) (8.3.49

Pk — K, 3.49)

which corresponds to the same variance as the global Master equation.

For large ¢, i.e., small wavelengths, we fine

{pys(2m)~3 (8.3.50)
corresponding to

(S — ¥, N (8.3.51)

i.e., Poissonian fluctuations. Physically, the difference arises from the different
scaling of the diffusion and reaction parts of the master equation which was noted
in Sect. 8.2.3. Thus, in a small volume the diffusion dominates, since the fluctuations
arising from diffusion come about because the molecules are jumping back and
forth across the boundary of V. This is a surface area effect which becomes rela-
tively larger than the chemical reaction fluctuations, which arise from the bulk
reaction, and are proportional to volume. Conversely, for larger ¥, we find the
surface effect is negligible and only the bulk effect is important.

b) Space-Time Correlations
Since the system is linear, we can, as in Sect. 8.3.1, use the method of Sect. 3.7.4
Define

G(r, 1) = {p(r, 1), p(0, 0)), . (8.3.52)
Then the linear equation corresponding to (3.7.63) is

3,G(r, t) = DP*G(r, t) — (K, — K;)G(r, 1) (8.3.53)
with an initial condition given by

G(r, 0) = {p(r), p(0), (8.3.54)



Uiv DPULIGL wiis s e — e —

which is given by (8.3.35). Representing G(r, t) as a Fourier integral

G(r,1) = [d’qe " G(g, 1), (8.3.55)
(8.3.53) becomes
aG(g, 1) = —(Dg* + K, — K;)G(g, 1) (8.3.56)

whose solution is, utilising the Fourier representation (8.3.47) of the initial
condition (8.3.54),

Dq* + K,

7] — -3
G(q, t) - (271:) qu + Kl . KZ

exp[—(Dq? + K,— K))t]. (8.3.57)
If desired, this can be inverted by quite standard means though, in fact, the
Fourier transform correlation function is often what is desired in practical cases
and being usually easier to compute, it is favoured.

Thus, we have

G(r, 1) = {p) exp(—r*/4Dt — Dt/I?)

(4nDr)*'?
+ S fexp(—rit) exte [ = — 5]
+ [exp(r/L)] erfc [(D 2”2 + 55 ),,2}} (8.3.58)
For small 7 we find
G(r, 1) — {p) exp (4%’:) [(411:Dt)"’2 — 4’f§$’.’n_)m] Kﬁfg"", (8.3.59)
while for large ¢,
Glr, 1) ~ (SBLIDD o el ) o> exa(—Du (83.60

¢) Behaviour at the Instability Point

As K, — K, the reaction approaches instability, and when K; = K, there are no
longer any stationary solutions. We see that simultaneously,

i) the correlation length I, — oo (8.3.36);
if) thevariance of the fluctuationsina volume ¥ > I? will become infinite [(8.3.42)].
However, as I. — oo at finite ¥, one reaches a point at which /> ~ V'and (8.3.42)
is no longer valid. Eventually /> > V; the volume now appears small and the
fluctuations within it take the Poissonian form;
iii) the correlation time is best taken to be

t. = I2/D (8.3.61)
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being the coefficient of 7 in the exponent of the long-time behaviour of the space
time correlation function (8.3.60) (ignoring the diffusive part). Thus, 7, — oo also,
near the instability. We thus have a picture of long-range correlated slow fluctua-
tions. This behaviour is characteristic of many similar situations.

8.3.3 A Nonlinear Model with a Second-Order Phase Transition

We consider the reactions

k2
A+ Xe22X
ks (8.3.62)

considered previously in Sects. 7.7c, 7.7.3a, 7.7.4c. This model was first introduced
by Schlogl [8.4] and has since been treated by many others.
The deterministic equation is

0,p(r, 1) = DP*p + k3 + (k2 — K1)p — Kep? (8.3.63)
whose stationary solution is given by

o) = p, =Kk, — k1 + /i, — 1)) + dicaics) 2k, . (8.3.64)
[The x’s are as defined by (7.5.29), with 2 = [*]. For small k3, this stationary
solution represents a transition behaviour as illustrated in Fig. 8.1.

The appropriate stochastic differential equation in the Poisson representation
is

Ks>0

Ka=0
Fig. 8.1. Plot of <{x) vsk,
for the second-order phase
transition model
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dn(r, t) = [(Dn)(r, 1) + k5 + (2 — K)In(r, 1) — ken(r, D)]dt

+ 2 lran(r, t) — kan*(r, H)]2dW(r, 1), (8.3.65)

where
dW(r, )YdW(r', t) = &(r — r)dt . (8.3.66)

Here we have not taken the continuum limit developed in Sect. 8.2.1 but have pre-
served a possible nonlocality of diffusion, i.e.,

@n)r,t)=— [ D(|r—r |, Ndr (8.3.67)

but we have considered only homogeneous isotropic diffusion.

In this form, there is no small parameter multiplying the noise term dW(r, t)
and we are left without any obvious expansion parameter. We formally introduce a
parameter A in (8.3.65) as

dn(r, t) = [(@n)(r, t) + K3 + (c; — k)n(r, 1) — kan(r, 1)]dt
+ A/ 2 rean(r, t) — kan(r, 1)]'2dW(r, 1) (8.3.68)
and expand x(r, t) in powers of A to
n(r, t) = no(r, t) + A (r, t) + A2ny(r, t) + ... ‘ (8.3.69)

and set 1 equal to one at the end of the calculation. However, if it is understood
that all Fourier variable integrals have a cutoff /7!, this will still be in fact a (/*)™!
expansion.

Substituting (8.3.69) in (8.3.65), we get

dno;:’_t) = (Do), 1) + K3 + (g — k)o(r, 1) — Kani(r, 1) (8.3.70)
dm(r, t) = {((Dn)(r, t) + [k, — k1 — 2K64n0(r, ]m(r, 1)} dt
+ &/ 2 lranolr, 1) — Kkanj(r, 1))/ 2dW(r, t) (8.3.71)

dny(r, t) = {(Dn)(r, t) + [k, — Ky — 2kano(r, )Ina(r, t) — Kani(r, 1)} dt

[2 — 2ramo(r, Olni(r, t)
&/ 2 [rano(r, t) — Kand(r, 1)]'?

+ dW(r, t). (8.3.72)

Equation (8.3.70) has a homogeneous steady-state solution (8.3.64) so that
Ky — K — 2K = k = [(k; — Kky)* + dicks]''? . (8.3.73)

Substituting this in (8.3.70~72) and taking the Fourier transforms, we get

m(g, 1) = Qwyno)*'? i [exp {—[2(¢*) + k)t — 1)} 1dW(q, 1') (8.3.74)
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Aalg, 1) = —xo [ d*, | drlexp {17 (g") + Kt — )} )iu(g — 9 Vin(an, 1)
o ° (8.3.75)
+ Ben — ] 0 [exp (=@ + Kl — ) ilg — g1, 1) W@, 1)

where

a0 = (35) ] expl-ig-ndwe, e (8.3.76)
and
l 3/2 X
(g, 1) = (5&) [ exp (—ig-rm(r, )d’r , (8.3.77)

etc., and (q?) is the Fourier transform &(|r — r'|). We have left out the trivial
initial value terms in (8.3.74, 75).

To the lowest order, the mean concentration and the correlation function are
given by (in the stationary state)

{p(r, 1)) = no (8.3.78)
Cp(r, Dp(r', 1)y — {p(r, 1)><{p(r, 1)) = nod(r — r')
+ {m(r, Om(r', 1)) . (8.3.79)
From (8.3.74) it follows that
§
- = _ Kined(g + ¢) _ _ 2
g, DG, 1) = @@ £« (1 —exp{—2[2(¢*) + x]t}]. (8.3.80)

Hence, the lowest-order contributions to the correlation function in the steady
state are given by

p(n)p(r') — Lp(N){p(r)) = nod(r + 1)

KMo 5, explig-(r — r)]
+ (21!:)3J.d q———————-g(qz) TR (8.3.81)

If we assume that

(Dn)(r) = Dv*n(r), (8.3.82)
then
D(q*) = Dg* . (8.3.83)

Equation (8.3.81) then has exactly the same form as derived previously in
(8.3.35), namely,

), Py = DB — ) + g Prexp(— = 1) (8384)
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where
I, = (D/k)'? . (8.3.89)

All the same conclusions will follow concerning local and global fluctuations,
Poissonian and non-Poissonian fluctuations, since these are all consequences of the
form (8.3.84) and not of the particular values of the parameters chosen.

Notice that if x, = x,, as x; — 0 so does ¥ — 0, and hence /., — oo, and the
same long-range correlation phenomena occur here as in that example.

Higher-Order Corrections: Divergence Problems. These are only lowest-order results,
which can be obtained equally well by a system size expansion, Kramers-Moyal
method, or by factorisation assumptions on correlation function equations.

The next order correction to the mean concentration is {n,(r, t)>. Now from
(8.3.75)

g, ) = — [ d'q, { dt’ exp{—[2(g) + x|t — 1))
X {m(g — qu 1Im(qy, 1)) (8.3.86)

In the steady state (8.3.86) gives

AP = —rainod(q) | sz)ql_‘_—x (8.3.87)

For the choice of & given by (8.3.83,87) gives

K4k d?
) = — 8 1Mo 9

oy | Dyt (8.3.88)

and this integral is divergent. The problem lies in the continuum form chosen, for
if one preserves the discrete cells at all stages, one has two modifications:
i) [ d*qis asum over all allowed ¢ which have a maximum value |g| ~ 1/I.
i) D(q*) is some trigonometric function of ¢ and /. If
d; =0 (i not adjacent to j)

= d otherwise,

then 2 (¢*) has the form

‘1[]'7)[sin2 ([%") + sin? ([g—’) + sin? (%)]

In this form, no divergence arises since the sum is finite and for

lgl L1,
2(q¢*) — Dq* .
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Nonlocal Reactions. The divergence, however, can also be avoided by preserving the
continuum but modifying the #*(r) term in the equations. This term represents a
collision picture of chemical reactions and will be nonlocal for a variety of reasons.
i) Molecules have a finite size, so a strictly local form ignores this.

i) The time scale on which the system is Markovian is such that molecules will have
travelled a certain distance in this time; the products would be the result of
encounters at a variety of previous positions, and would be produced at yet
another position. By making the replacement

n(r)? — [ d>f'd*r m(r — ¥, r — (e )n(r"), ‘ (8.3.89)

one finds that instead of (8.3.88) one has

_ kg d’qm(g, —q)
My = (2n)3IZI Dq* + k (8.3.90)
where ri(q, ¢') is the fourier transform of m(r, ¥'). If m is sufficiently nonlocal, at
high ¢, m(q, —¢) will decay and {#,> will be finite.

8.4 Connection Between Local and Global Descriptions

We saw in Sect. 8.3.2 that the variance of the fluctuations in a volume element V is
Poissonian for small ¥ and for sufficiently large V, approaches that corresponding
to the master equation without diffusion for the corresponding reaction. This arises
because the reactions give rise to fluctuations which add to each other whereas
diffusion, as a mere transfer of molecules from one place to another, has an effect
on the fluctuations in a volume which is effective only on the surface of the volume.

There is a precise theorem which expresses the fact that if diffusion is fast
enough, the molecules in a volume ¥ will travel around rapidly and meet each
other very frequently. Hence, any molecule will be equally likely to meet any other
molecule. The results are summarised by Arnold [8.5] and have been proved quite
rigorously.

Basically, the method of proof depends on adiabatic elimination techniques as
developed in Chap. 5 and can be easily demonstrated by Poisson representation
methods.

8.4.1 Explicit Adiabatic Elimination of Inhomogeneous Modes

We suppose we are dealing with a single chemical species which diffuses and reacts
according to the cell model and thus has a Poisson representation Fokker-Planck
equation:
oP 0 d 9
5= = - 7 Dy |+ 3 [6_x, a(x) + 5560 | P (8.4.1)

We introduce the eigenvectors fi(q) of D,, which satisfy
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; D, f(q) = —DM@)f(q) - (8.4.2)

The precise nature of the eigenfunctions is not very important and will depend on
D;,. For the simplest form, with transfer only between adjacent cells and with
reflecting boundaries at the walls of the total system, assumed to be one dimen-
sional and of length L = NI (with [ the cell length), one has

£(q) o< cos (ql)) (8.4.3)

and the reflecting boundary condition requires that ¢ has the form

_nm

9= (n=0,1,..,N) (8.4.9)
and
Ag) = 4 sin? (521) / I (8.4.5)

Appropriate modifications must be made to take care of more dimensions, but the
basic structure is the same, namely,

A0) =0 (8.4.6)
Mg)>0 (¢+#0) and
f(0) = constant = N~!/2, 8.4.7)

This last result represents the homogeneous stationary state of diffusion with the
normalisation N'/2 fixed by the completeness and orthogonality relations

2/ D4) = daar

(8.4.8)
SIADfAg) = b.;-
We now introduce the variables
x(q) = EIIJ(q)x, . (8.4.9)
The variable of interest is proportional to x(0), since
x(0) = N~!/2 ; X, (8.4.10)

is proportional to the total amount of substance in the system. The other variables
are to be adiabatically eliminated. In anticipation of an appropriate choice of
operators L,, L,, L,, we define
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W) =x(9)»/D (g #0) (8.4.11)

x=x(O)y/N=N"5x. (8.4.12)

The various terms in the FPE can now be written

2 x DuXy=—DX e 5;3(—‘15 ). (8.4.13)
Define now
= 2 /(@9)¥9) (8.4.14)
then

SEaw) =g nia(x+ o)
0
+ 4/ Dqgmgf.-(q)a(x+ 7D ,) (8.4.15)

?aa—);b("')—_zaxz (x \/D”‘)
+71\7~/_Da—x§:f%f:(q)b( —= 0]

z x4 -
+ ?Eﬁ, ey Ak (x + ﬁv,). (8.4.16)

We now write this in decreasing powers of /D . Thus, define

_ ) =2 &
DL, = D 5[~ 20) 505 M) + g5 9| (34.17)

which is the coefficient of D in an expansion of the terms above (lower-order terms
are absorbed in L,). We also set

L3=<l2[%a%a(x+71—ﬁv,-) +1%2:?22b(x+ﬁv,)]> (8.4.18)

where the average is over the stationary distribution of L,. As D becomes large,
L, = [ atx) + 4 o 2b(x)]+ o(ﬁ) (8.4.19)

We define L, to order /D which can be computed to involve only terms in which
d/0y(q) stands to the left. Thus, in carrying out an adiabatic elimination of the
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¥q) variables as D — oo to lowest order, there will be no PL,L;'L, contribution
and we ultimately find the FPE

1 2
?a_’: - [aix ax) + + aa? b(x)] P (8.4.20)

which corresponds to the global Master equation, since x is by (8.4.12) a concen-
tration. Notice that the condition for validity is that

DA(1) > K (8.4.21)
where K represents a typical rate of the chemical reaction, or noticing that

A1) = (n/NI?),

L3

2]2
D> Kﬁ/zl (8.4.22)
or
J % > % (8.4.23)

The left-hand side, by definition of diffusion, represents the root mean square
distance travelled in the time scale of the chemical reaction, and the inequality
says this must be very much bigger than the length of the system. Thus, diffusion
must be able to homogenise the system. In [8.9] this result has been extended to
include homogenisation on an arbitrary scale.

8.5 Phase-Space Master Equation

The remainder of this chapter deals with a stochastic version of kinetic theory
and draws on the works of van Kampen [8.6] and van den Broek et al. [8.7).

We consider a gas in which molecules are described in terms of their positions
r and velocities v. The molecules move about and collide with each other. When a
collision between two molecules occurs, their velocities are altered by this collision
but their positions are not changed. However, between the collisions, the particles
move freely with constant velocity.

Thus, there are two processes—collision and flow. Each of these can be handled
quite easily in the absence of the other, but combining them is not straightforward.

8.5.1 Treatment of Flow

We suppose there is a large number of particles of mass m with coordinates r, and
velocities v,, which do not collide but move under the influence of an external
force field mA(r). The equations of motion are

i‘ll= vil

8.5.1)
v, = A(r,) .



Then a phase-space density can be defined as
Slr,v, 1) = 338(r — r,(1))8(L — v,(1)) (8.5.2)
so that

0:f(r, v, 1) = 3 [#a P O(r — 1, (1))3(0 —U,(1)) + 8(r — r(1))V,- 7,30 —v,(1))]

and using the properties of the delta function and the equations of motion (8.5.1),
we get

[0, +v-7 + A(r)-V7,) f(r, v, t) = 0. (8.5.3)

This is a deterministic flow equation for a phase-space density. If the particles are
distributed according to some initial probability distribution in position and velocity,
(8.5.3) is unaltered but f(r, v, t) is to be interpreted as the average of f(r, v, t) as de-
fined in (8.5.2) over the initial positions and velocities.

Equation (8.5.3) is exact. The variable f(r, v, t) can be regarded as a random
variable whose time development is given by this equation, which can be regarded as
a stochastic differential equation with zero noise. The number of particles in a
phase cell, i.e., a six-dimensional volume element of volume 4, centred on the
phase-space coordinate (r;, v,) is, of course,

X(r,v) = [drdvf(r,v). (8.5.9)

4
8.5.2 Flow as a Birth-Death Process

For the purpose of compatibility with collisions, represented by a birth-death
Master equation, it would be very helpful to be able to represent flow as a birth-
death process in the cells 4,. This cannot be done for arbitrary cell size but, in the
limit of vanishingly small cell size, there is a birth-death representation of any flow
process.

To illustrate the point, consider a density p(r, ¢) in a one-dimensional system
which obeys the flow equation

o,p(r,t) = —Kd,p(r, t). (8.5.5)
This deterministic equation is the limit of a discrete equation for x,, defined as
x(t) = Z{ dr p(r, t) = Ap(r,, t) (8.5.6)

where 4, is an interval of length A around a cell point at r,. The flow equation is
then the limit as A — 0 of

Bux(t) = - [xea(t) — x(0)], (8.5.7)



ie.,
20,p(ri, 1) = 5 [Aplrs — 4, 1) — Ap(rs, 1] (8.5.8)

whose limit as A — 0 is the flow equation (8.5.5). A stochastic version is found by
considering particles jumping from cell i to cell i + 1 with transition probabilities
per unit time:

t*(x) = kx,/A
t7(x)=0.

(8.5.9)

This is of the form studied in Sect. 7.5, whose notation (7.5.4, 5) takes the form
here of 3

A—i
Ni—6,, (8.5.10)
M — 6,1,

J

Fi— 05101 — 054

We consider the Kramers-Moyal expansion and show that in the limit A — 0, all
derivate moments except those of first order vanish. The drift coefficient is given
by (7.5.32), i.e.,

A (x) = 2 (Garig1 — Oa)rcx,/A

8.5.11
= % (xa—l - xa) ( )
and the diffusion matrix
Bos(®) = 5 [Gus — act ¥ars + (Bas — Sus )] - (8.5.12)
We now set x;, = p(r,) as in (8.5.6) and take a small A limit; one finds
Au(x) — S hpra — 3, 1) — 2p(res D] (8.5.13)
— — Axd,p(r, t) (8.5.14)
and the limiting value of B, ,(x) is found similarly, but also using
Oup— AO(r, — rp) (8.5.15)
B, ,(x) — k1%3,0,.[8(r — r')p(r)] . (8.5.16)

Thus, in this limit, p(r, ) obeys a stochastic differential equation



dp(r, t) = — x0,p(r, t)dt + A'2dW(r, 1) (8.5.17)
where
dW(r, )dW(r', t) = k dtd,0,[8(r — r')p(r, t)] . (8.5.18)

We see that in the limit A — 0, the noise term in (8.5.17) vanishes, leading to the
deterministic result as predicted.

It is interesting to ask why this deterministic limit occurs. It is not a system size
expansion in the usual sense of the word, since neither the numbers of particles x,
nor the transition probabilities #*(x) become large in the small A limit. However,
the transition probability for a single particle at r; to jump to the next cell does
become infinite in the small A limit, so in this sense, the motion becomes determini-
stic.

The reader can also check that this result is independent of dimensionality of
space. Thus, we can find a representation of flow in phase space which, in the
limit of small cell size, does become equivalent to the flow equation (8.5.3).

Let us now consider a full phase-space formulation, including both terms of the
flow equation. The cells in phase space are taken to be six-dimensional boxes with
side length A in position coordinates and ¢ in velocity coordinates. We define the
phase-space density in terms of the total number of molecules X in a phase cell by

[, v) = X(r7, v9)[E° . (8.5.19)

We consider transitions of two types. For simplicity, consider these only in the
x-direction and define

A,=(400). (8.5.20)
Type 1: Flow in position space:

X, v)— X(r', v") — 1
and either

X(rf+ 4, v) — X' + 4, V) + 1 (v, > 0) (8.5.21)
or

X(r'— 24, 0)— X(r' — 4,, V") + 1 (v, <0).
Then we make the labelling 4 — (i, x, 1):

NE=D = 4(r, r1)o(v', v°)
M&=D = 5 — 4., r*)o(", v°) (8.5.22)

re=ED = MGxD _ NGxD
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+ — 2 i gy 3

t(_t.x.l)(X) A2 vy | X(r!, V)2 (8.5.23)

t(i.x.l)(X) =0.
The form (8.5.23) is written to indicate explicitly that the transition probability is
the product of the end surface area of the cell (1?), the number of particles per
unit volume, and the x component of velocity, which is an approximation to the
rate of flow across this cell face.

Consequently, assuming v, > 0,

AFD =0, [X(r" + A, v°) — X(r*, v%)]/2 (8.5.24)
= P [f(r* + A, v°) — f(r*, v)]/A (8.5.25)
— B, % fir ). (8.5.26)

In a similar way to the previous example, the diffusion matrix B, , can be shown
to be proportional to A and hence vanishes as A — 0.

Type 2: Flow in velocity space:
Define

¢.=1(,00). (8.5.27)
Then we have

X, v)— X(r,v") — 1
and either

X, v+ &) — X, v+ &)+ 1 4,>0) (8.5.28)
or

X(r v — &)=~ X, v — &)+ 1 (4. <0).
The labelling is

A - (i, X, 2)
NE=D = §*, v2)o(r, r°)
MExD = §v' — £, v, r°)

réx =[5 — &, v°) — &V, v9)]6(r, r7) (8.5.29)
i n(X) = &AL X(r, V)&
toxn(X)=0.

Consequently, assuming 4,(r®) > 0, the drift coefficient is



A, = [X(r°, v° + §)A(r*) — X(r°, v)A(r)]/& (8.5.30)
= EVA(r)f(re, v° + &) — fre, vI))/E (8.5.31)

— E1A,(r) a%f(r, v). (8.5.32)

Again, similar reasoning shows the diffusion coefficient vanishes as & — 0.
Putting together (8.5.26, 32), one obtains the appropriate flow equation (8.5.3)
in the A, &, — 0 limit.

8.5.3 Inclusion of Collisions—the Boltzmann Master Equation

We consider firstly particles in velocity space only and divide the velocity space
into cells as before. Let X(v) be the number of molecules with velocity v (where the
velocity is, of course, discretised).

A collision is then, represented by a “‘chemical reaction”,

X(v) + X(v) — X(vi) + X(v) - (8.5.33)

The collision is labelled by the index (i, j, k, /) and we have (using the notation of
Sect. 7.5)

N =6, + 5::.1

MM =6, + 6., (8.5.34)
rg‘kl = —04,i — 5a,j + 60./{ + &.I

and the transition probability per unit time is taken in the form

t5u(X) = R(j, kDX (©)X(v)
tiu(X)=0.

(8.5.35)

There are five collisional invariants, that is, quantities conserved during a colli-
sion, which arise from dynamics. These are:

i) the number of molecules—there are two on each side of (8.5.33);
ii) the three components of momentum: since all molecules here are the same, this
means in a collision

Vit uv,=v+ U (8.5.36)
iii) the total energy: this means that
v} 4 v} = v} 4 v?. (8.5.37)

The quantities v, and v? are known as additive invariants and it can be shown that
any function which is similarly additively conserved is a linear function of them
(with a possible constant term) [8.8].



In all molecular collisons we have time reversal symmetry, which in this case
implies

R(ij, kI) = R(kl, ij) . (8.5.38)
Finally, because of the identity of all particles, we have
R(ij, kl) = R(ji, kI) = R(ij, Ik), etc. (8.5.39)

We now have a variety of possible approaches. These are:

i) Attempt to work directly with the Master equation.

ii) System size expansion: we assume &3, the volume in phase space of the phase
cells is large, and we can write a FPE using the Kramers-Moyal expansion.
From (7.5.32), we can"write a FPE with a drift term

Aa(X) 22" I(_éa.i - 50,} + 5a.k + 5a.1)X(Ui)X(vj)R(ij9 k[) (8'540)
Lk,
and utilising all available symmetries,
=2 %,R(aj’ k) [X ()X () — X(va)X(v))] - (8.5.41)

The diffusion coefficient can also be deduced;
B X) = J}; e Ry, kDX ()X ()
and again, utilising to the full all available symmetries,
Bay(X) = 26, ;,Z:f,R(aj’ kDX(v)X(v) + X(v)X (V)]
+ 2 Z, R(ij, ab)[ X(v) X (v)) + X(v.)X(v,)]
—4 JZI‘ R(aj, b X(v,)X(v)) + X(vp)X(v)]. (8.5.42)
These imply a stochastic differential equation
dX(v,) = {2];’ R(aj, k) [X(v)X(v) — X(v)X(v))}dr + dW(v,, t)  (8.5.43)
where
dW(v,, t)dW(v,, t) = dt B,,(X) . (8.5.44)

Neglecting the stochastic term, we recover the Boltzmann Equation for X(v,) in a
discretised form. As always, this Kramers-Moyal equation is only valid in a small
noise limit which is equivalent to a system size expansion, the size being &3, the
volume of the momentum space cells.

iii) Poisson representation: the Boltzmann master equation is an ideal candidate for
a Poisson-representation treatment. Using the variable a(v,) as usual, we can follow
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through the results (7.7.6-9) to obtain a Poisson representation FPE with a drift
term

A (a) = Zsz_‘.I R(aj, k) [a(v)a(v;) — a(v)a(v))] (8.5.45)
and diffusion matrix

B,(e) = 25.:»“21 R(ij, kD[a(v)a(v)) — a(v,)a(v,)]

+2 72./ R(ij, ab)la(v)a(v)) — a(va)a(v,)]

= 8. 3 R(@), BDla@)a(v)) — a(®)a(®)] (8.5.46)
and the corresponding SDE is

da(v,) = 2;:1 R(aj, k) [a(ve)a(v) — a(v,)e(v))] + dW(v,, t) (8.5.47)
where B

AW, 1)YdW(v, t) = dt B,y(e) . (8.5.48)

As emphasised previously, this Poisson representation stochastic differential equation
is exactly equivalent to the Boltzmann master equation assumed. Unlike the Kramers-
Moyal or system size expansions, it is valid for all sizes of velocity space cell ¢&.

iv) Stationary solution of the Boltzmann master equation: we have chosen to
write the Boltzmann master equation with 77,,(X) zero, but we can alternatively
write

15.a(X) = t(X) (8.5.49)

and appropriately divide all the R’s by 2, since everything is now counted twice.
The condition for detailed balance (7.5.18) is trivially satisfied. Although we
have set t=(ij, kI) = 0, the reversed transition is actually given by ¢*(k/, ij). Hence,

ki = ki = R(j, k), (8.5.50)

provided the time-reversal symmetry (8.5.38) is satisfied.
Under these conditions, the stationary state has a mean (X satisfying

a(v)a(v)) = a(V)a(v)) . (8.5.51)

This means that log [a(v;)] is additively conserved and must be a function of the
invariants (8.5.36, 37) Hence,

a(v) = exp[—(v — U)}/mkT]. (8.5.52)

Here m is the mass of the molecules and U and kT are parameters which are of
course identified with the mean velocity of the molecules, and the absolute tem-
perature multiplied by Boltzmann’s constant.



8.5 Phase-Space Master Equation 339

The stationary distribution is then a multivariate Poisson with mean values
given by (8.5.52). The fluctuations in number are uncorrelated for different veloci-
ties.

8.5.4 Collisions and Flow Together

There is a fundamental difficulty in combining the treatment of flow and that of
collisions. It arises because a stochastic treatment of flow requires infinitesimally
small cells, whereas the Boltzmann master equation is better understood in terms
of cells of finite size. This means that it is almost impossible to write down expli-
citly an exact stochastic equation for the system, except in the Poisson representa-
tion which we shall shortly come to.

To formally write a multivariate phase-space master equation is, however,
straightforward when we assume we have phase-space cells of finite size A3¢3. We
simply include all transitions available, i.e., those leading to flow in position space,
flow in velocity space and collisions. The resultant Master equation thus includes
the possible transitions specified in (8.5.22, 23, 29) and in a modified form (8.5.
34, 35). Here, however, we have collisions within each cell defined by the transition
probability per unit time

t5(X) = 8(r.y 1) 8(re, 1)) 8(rs, 1) R, KDX,X, . (8.5.53)

For finite 13¢3, there will be an extra stochastic effect arising from the finite cell
size as pointed out in Sect. 8.5.2, which disappears in the limit of small A and ¢
when transfer from flow is purely deterministic.

The resulting master equation is rather cumbersome to write down and we
shall not do this explicitly. Most work that has been done with it has involved a
system size expansion or equivalently, a Kramers-Moyal approximation. The
precise limit in which this is valid depends on the system size dependence of R(ij, k/).
The system size in this case is the six-dimensional phase-space volume A3£3. In
order to make the deterministic equation for the density, defined by

flr, v) = X(r, 0)[ 238 . (8.5.59)
independent of cell size, R(ij, k/) as defined in (8.5.53) must scale like (1°£%)%, i.e.
RGj, kI) = R(ij, kI) (R°&)* . (8.5.55)

This is interpretable as meaning that R(ij, k/) is the mean collision rate per phase-
space volume element in each of the arguments.
Taking the conservation law (8.5.36, 37) into account, we can then write

R(ij, kl) = 8al(v, — v)), (v, — V) (Lx — V)]
X 8} + v} — v} —v}) (v, + v; — v — V) (8.5.56)

and we have assumed that ¢ is a function only of scalars. [The fact that ¢ is only a



340 8. Spatially Distributed Systems

function of (v, — v))* and (v, — v;)-(vx — v,) is a result of scattering theory, and it
follows from invariance with respect to the Galilean group of transformations, i.e.,
rotational invariance, and the fact that the laws of physics do not depend on the
particular choice of unaccelerated frame of reference. We choose to keep the
dependence in terms of scalar products for simplicity of expression in the fluctua-
tion terms.]

a) Kramers-Moyal Expression
We now replace the summations by integrations according to

(&2 3 — [ d*r,d, (8.5.57)
]

and change the variables by

v, =0
v =4(p + 9) (8.5.58)
v=4%p—9.

After a certain amount of manipulation in the collision term, the deterministic
equation comes out in the form [from (8.5.3.41)]

df(r, v) = |—v-Pf(r, v) — 4-V,f(r, v)

$
+ [ d, J‘,%l’sm — v — v, ])olg, g-@ — vy)] (8.5.59)

X [fIr, 3 + v, — 1SIr, 3 + v, + @] — f(r,v) flr,v)]dt.

The stochastic differential equation, arising from a Kramers-Moyal expansion, is
obtained by adding a stochastic term dW(r, v, t) satisfying

dW(r,v,t) dW(r,U',t) = 8(r — r')dt X [S(U — ) _|' d*v, % 3(|g| — |v—1vy])
Xa(g’, g-(© — v)IfIr, 3 + V=@ fIr, 3 + v, + 9] + 1 (r, v) f(r, v1)]
—2 [ d*k 8[(v, — v,)-k] o[(V, — v,)* + (K%, —(v, — ) + $K?]

X [0 fws — k) + f03) fw, — K] - (8.5.60)

Using such a Kramers-Moyal method, van den Broek et al. [8.7] have been able
to apply a Chapman-Enskog expansion and have obtained fluctuating hydrody-
namics from it.

The validity of this method, which depends on the largeness of the cells for the
validity of the Kramers-Moyal expansion and the smallness of the cells for the
validity of the modelling of flow as a birth-death process, is naturally open to
question. However, since the Chapman-Enskog method is probably equivalent to
the adiabatic elimination of the variables governed by the Boltzmann collision term,
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the result of adiabatic elimination is not likely to be very sensitive to the precise
form of this operator. Thus, the Kramers-Moyal approximation may indeed be
sufficiently accurate, even for very small cells.

b) Poisson Representation
The Poisson representation stochastic differential equation can be similarly
obtained from (8.5.45, 46). We use the symbol g(r, v) defined by

¢(r, v) = a(r, V)/(A°E) . (8.5.61)
We find
dg(r,v) = dt {—v-pg(r,v) — A-7 4(r, v) + j'd’v, %B(MI — v —1,])
x olg* q-(v — V)] [ fIr, 3(v + v, — PIflr, (v + v, + 9)]
—f(r,v) f(r, vl)]’ + dW(r, v, t), (8.5.62)
where

3
dW(r,v, )dW(r',v', t) = 8(r — r)dt x (6(0 — v’)jd’v, ‘%q—TB(|q| —|v—r|)

X 0[92, q(U - vl)] {¢[r’ %(U + Ul - q)] ¢[l‘, %(U-{-U, + q)] - ¢(I’, U) ¢(l’, vl)}
+ [T g1~ 10— v ola’ g-0 — )]

X {glr, 3(e + 7' — @) glr, J(o+v'+)] — 4, ) §(r, V) ). (8.5.63)

The terms in (8.5.63) correspond to the first two terms in (8.5.46). The final term
gives zero contribution in the limit that &4° — 0.

As always, we emphasise that this Poisson representation stochastic differential
equation is exactly equivalent to the small cell size limit of the Boltzmann Master
equation with flow terms added. Equations (8.5.62, 63) have not previously been
written down explicitly, and so far, have not been applied. By employing Chapman-
Enskog or similar techniques, one could probably deduce exact fluctuating hydro-
dynamic equations.



9. Bistability, Metastability, and Escape Problems

This chapter is devoted to the asymptotic study of systems which can exist in at
least two stable states, and to some closely related problems. Such systems are of
great practical importance, e.g., switching and storage devices in computers are
systems which have this property. So do certain molecules which can isomerise,
and more recently, a large number of electronic, chemical and physical systems
which demonstrate related properties in rich variety have been investigated.

The problems of interest are:
i) How stable are the various states relative to each other?
ii) How long does it take for a system to switch spontaneously from one state
to another?
iii) How is the transfer made, i.e., through what path in the relevant state space?
iv) How does a system relax from an unstable state?

These questions can all be answered relatively easily for one-dimensional diffu-
.sion processes—but the extension to several, but few dimensions is only recent.

The extension to infinitely many variables brings us to the field of the liquid-gas
transition and similar phase transitions where the system can be in one of two
phases and arbitrarily distributed in space. This is a field which is not ready to be
written down systematically from a stochastic point of view, and it is not treated
here.

The chapter is divided basically into three parts: single variable bistable diffu-
sion processes, one-step birth-death bistable systems and many-variable diffusion
processes. The results are all qualitatively similar, but a great deal of effort must be
invested for quantitative precision.

9.1 Diffusion in a Double-Well Potential (One Variable)

We consider once more the model of Sect. 5.2.7 where the probability density
p(x, t) of a particle obeys the Fokker-Planck equation

0,p(x, t) = 3,[U'(x)p(x, 1)] + D% p(x, t) . .1.1)

The shape of U(x) is as shown in Fig. 9.1. There are two minima at @ and ¢ and in
between, a local maximum. The stationary distribution is

ps(x) = A exp[— U(x)/D] 9.1.2)

and it is this that demonstrates the bistability. Corresponding to a, ¢ and b are



9.1 Diffusion in a Double-Well Potential (One Variable) 343

Fig. 9.1. Plot of p,(x) and U(x) for a double well pot-
ential

two maxima, and a central minimum as plotted in Fig. 9.1. The system is thus most
likely to be found at a or c.

9.1.1 Behaviour for D = 0
In this case, x(¢) obeys the differential equation

dx

7= "U®,  x0)=x. (9.1.3)
Since
O — v = e <o,

x(t) always moves in such a way as to minimise U(x), and stops only when U’(x)
is zero. Thus, depending on whether x, is greater than or less than b, the particle
ends up at ¢ or a, respectively. The motion follows the arrows on the figure.

Once the particle is at a or c it stays there. If it starts exactly at b, it also stays
there, though the slightest perturbation drives it to a or ¢. Thus, b is an unstable
stationary point and a and ¢ are stable. There is no question of relative stability of
a and c.

9.1.2 Behaviour if D is Very Small

With the addition of noise, the situation changes. The stationary state can be ap-
proximated asymptotically as follows. Assuming U(x) is everywhere sufficiéntly
smooth, we can write

U(x) = U(a) + $U"(a) (x — a)? |x — a| small

9.1.4)
= U(c) + 3U"(c) (x — ¢)* |x — ¢| small.
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If D is very small, then we may approximate

p(x) = AN exp [—U(a)/D — $U"(a) (x — a)*/D] |x — a| small
= N exp[—U(c)/D — $U"(c) (x — ¢)*/D] |x —¢| small (9.1.5)
=~ 0 (elsewhere)

so that

N = e VDIP anD[U(a) + €7V 9'P /2nD]U(c) - (9.1.6)
Suppose, as drawn in the figure,

U(a) > U(c) . 0.1.7)

Then for small enough D, the second term is overwhelmingly larger than the first
and #"! can be approximated by it alone. Substituting into (9.1.5) we find

"(c) " 2 oY
po(x) = exp [—3U"(c) (x — ¢)*/D]  |x —¢c| ~/D
\/ 2nD (9.1.8)
=0 (otherwise) .

This means that in the limit of very small D, the deterministic stationary state at
which U(x) has an absolute minimum is the more stable state in the sense that in
the stochastic stationary state, p,(x)sis very small everywhere except in its imme-
diate vicinity.

Of course this result disagrees with the previous one, which stated that each
state was equally stable. The distinction is one of time, and effectively we will show
that the deterministic behaviour is reproduced stochastically if we start the system
at x, and consider the limit D — 0 of p(x, t) for any finite ¢t. The methods of Sect.
6.3 show this as long as the expansion about the deterministic equation is valid.
Equation (6.3.10) shows that this will be the case provided U’(x,) is nonzero, or,
in the case of any finite D, U’(x,) is of order D° (here, D replaces the &2 in Sect. 6.3.)
This is true provided x, is not within a neighbourhood of width of order D'/2 of
a, ¢, or b. This means that in the case of a and ¢, fluctuations take over and the
motion is given approximately by linearising the SDE around a or ¢. Around b,
the linearised SDE is unstable. The particle, therefore, follows the Ornstein-
Uhlenbeck Process until it leaves the immediate neighbourhood of x = b, at which
stage the asymptotic expansion in /D takes over.

However, for t — oo, the asymptotic expansion is no longer valid. Or, in other
words, the ¢ — oo limit of the small noise perturbation theory does not reproduce
the D — O limit of the stationary state.

The process that can occur is that of escape over the central barrier. The noise
dW(t) can cause the particle to climb the barrier at b and reach the other side. This
involves times of order exp(— const/D), which do not contribute to an asymptotic
expansion in powers of D since they go to zero faster than any power of D as D —0.
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9.1.3 Exit Time

This was investigated in Sect. 5.2.7c. The time for the particle, initially near a, to
reach the central point b is

T(a—b) = x| U"(B) | U"(@)]™""* exp {[U(b) — U(a))/D} .1.9)

(half as long as the time for the particle to reach a point well to the right of b). For
D — 0, this becomes exponentially large. The time taken for the system to reach
the stationary state will thus also become exponentially large, and on such a time
scale development of the solutions of the corresponding SDE in powers of D'/2
cannot be expected to be valid.

9.1.4 Splitting Probability

Suppose we put the particle at x,: what is the probability that it reaches a before c,
or ¢ before a? This can be related to the problem of exit through a particular end of
an interval, studied in Sect. 5.2.8 We put absorbing barriers at x = @ and x = ¢,
and using the results of that section, find n, and =, the “splitting probabilities” for
reaching a or ¢ first. These are (noting that the diffusion coefficient is D, and hence
independent of x):

[

(X)) = Lfo dx p,(x)“]/[ [ dx P,(x)"]

|

(9.1.10)

o

i) = | P axpicot | fax pen).

a

The splitting probabilities z, and =, can be viewed more generally as simply the
probability that the particle, started at x,, will fall into the left or right-hand well,
since the particle, having reached a, will remain on that side of the well for a time
of the same order as the mean exit time to b.

We now consider two possible asymptotic forms as D — 0.

a) x, a Finite Distance from b
We first evaluate

fdx p,G = [ dx #1 exp [UG)/D] . ©.1.11)

This is dominated by the behaviour at x ~ b. An asymptotic evaluation is cor-
rectly obtained by setting

U(x) = U®B) — | U"B)| /(b — x)* . 9.1.12)

As D — 0, the limits at x = a, ¢ effectively recede to +oco and we find
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.,f dx () ~ N J %‘(%} exp [U(B)/D] . (9.1.13)

Now suppose x, < b. Then J'o dx p(x)~! can be evaluated by the substitution

y = U®x) ©.1.14)

with an inverse x = W(y) and is asymptotically

U(xq)
V[ e W)y ~ 7 D VWU (x,)]

B D etorD 9.1.15)
= Uy
Thus,
7, ~ m \/_—w"z(iw exp [——Um) > U(b)] (9.1.16)
and
Mo=1—m,. (9.1.17)

We see here that the splitting probaBility depends only on x, and . Thus, the prob-
ability of reaching c in this limit is governed entirely by the probability of jumping
the barrier at b. The points at a and c are effectively infinitely distant.

b) x, Infinitesimally Distant from b

Suppose

Xo=0b—y,+/D- (9.1.18)

In this case, we can make the approximation (9.1.12) in both integrals. Defining
[9.1]

erf(x) = J g £ dr e, (9.1.19)
we find

1, =1 — 1, ~ {1 — erf [yor/ OB} (9.1.20)

= %[1 —erf[(b—xo)\/@—ﬂ}}- (9.1.21)

Equation (9.1.21) is the result that would be obtained if we replaced U(x) by its
quadratic approximation (9.1.12) over the whole range.
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¢) Comparison of Two Regions

The two regions give different results, and we find that a simple linearisation of the
SDE [which is what replacing U(x) by a quadratic approximation amounts to] gives
the correct result only in the limit of large D and in a region of order of magnitude
/D around the maximum b.

9.1.5 Decay from an Unstable State

The mean time for a particle placed at a point on a potential to reach one well or the
other is an object capable of being measured experimentally. If we use (9.1.1) for
the process, then the mean time to reach a or ¢ from b can be computed exactly
using the formulae of Sect. 5.2.8. The mean time to reach a from b is the solution of

— U mIT(@, %)) + Do, ()T (@, x)] = —7.(x) ©.1.2)
with the boundary conditions
n(a)T(a, a) = n,(c)T(a, c) =0 (9.1.23)

and n,(x) given by (9.1.10)

The solution to (9.1.22) is quite straightforward to obtain by direct integration,
but it is rather cumbersome. The solution technique is exactly the same as that used
for (5.2.158) and the result is similar. Even the case covered by (5.2.158) where we
do not distinguish between exit at the right or at the left, is very complicated.

For the record, however, we set down that

x! x!

73) [ dx'p (') | mo(@)pu2)dz—ma(x) | dx'p ()" | n(2)p(2)dz

T(a,x) = ] D) ]

(9.1.24)

where one considers that n,(x) is given by (9.1.10) and p,(z) by (9.1.2). It can be
seen that even for the simplest possible situation, namely,

U(x) = —}kx*, (9.1.25)

the expression is almost impossible to comprehend. An asymptotic treatment is
perhaps required. Fortunately, in the cases where p(z) is sharply peaked at a and ¢
with a sharp minimum at b, the problem reduces essentially to the problem of
relaxation to a or to ¢ with a reflecting barrier at b.

To see this note that

- 1) the explicit solution for 7,(x) (9.1.10) means

n(x) = 1 (x < b)
=1 (x=1>b) (9.1.26)
0

I

(x> b)
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and the transition from 1 to O takes place over a distance of order o/D, the width
of the peak in py(x)~'.
ii) In the integrals with integrand =,(z)p,(z), we distinguish two cases.

x’ > b: in this case the estimates allow us to say (%.1.27)

T 2oz = n,2, 9.1.29)

a

b
where n, = [ p,(z)dz and represents the probability of being in the left-hand well.

However, when x’ < a, we may still approximate =,(z) by 1, so we get

x!

x! b
[ n(2)py(2)dz = [ p(2)dz = ’—125 — I, p(2)dz . (9.1.30)
Substituting these estimates into (9.1.24) we obtain
b b
T(a, b) = D' [ dx'p,(x)™" [ p(z)dz . 9.1.31)

which is the exact mean exit time from b to @ in which there is a reflecting barrier at
b. Similarly,

T(c, b) = D! JE dx' py(x)™! ]'l po(2)dz . (9.1.32)
b b ¥

9.2 Equilibration of Populations in Each Well

Suppose we start the system with the particle initially in the left-hand well at some
position x, so that

p(x, 0) = 8(x—x,). 9.2.1)

If D is very small, the time for x to reach the centre is very long and for times small
compared with the first exit time, there will be no effect arising from the existence
of the well at c. We may effectively assume that there is a reflecting barrier at b.

The motion inside the left-hand well will be described simply by a small noise
expansion, and thus the typical relaxation time will be the same as that of the
deterministic motion. Let us approximate

U(x) = U(a) + $U"(a)x* ;

then the system is now an Ornstein-Uhlenbeck process and the typical time scale is
of the order of [U"(a)]™.

Thus, we expect a two time scale description. In the short term, the system
relaxes to a quasistationary state in the well in which it started. Then on a longer
time scale, it can jump over the maximum at b and the long-time bimodal stationary
distribution is approached.
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9.2.1 Kramers’ Method

In 1940, Kramers [9.2] considered the escape problem from the point of view of
molecular transformation. He introduced what is called the Kramers equation
(Sect. 5.3.6a) in which he considered motion under the influence of a potential
V(x) which was double welled. In the case of large damping, he showed that a
corresponding Smoluchowski equation of the form found in (6.4.18) could be
used, and hence, fundamentally, the escape problem is reduced to the one pre-
sently under consideration.

Kramers’ method has been rediscovered and reformulated many times [9.3].
It will be presented here in a form which makes its precise range of validity reason-
ably clear. .

Using the notation of Fig. 9.1, define

Mx, 1) = | dx'p(x, 1) (9.2.2)

N(@)=1—N, ()= M, 1)
and 9.2.3)
No(1) = (c — a) p(xo, 1) -

Further, define the corresponding stationary quantities by

n,=1—n,= f ps(xNdx’
- (9.2.4)
no = (c—a) py(xo)

From the FPE (9.1.1) and the form of p,(x) given in (9.1.2) we can write
dM(x, t) = D p,(x)3.[ p(x, t)/p(x)] 9.2.5)

which can be integrated to give

d; XIO dx M(x, t)[p(x) = D[ p(xo, 1)/p(xo) — p(a; 1)/ps(a)] . (9:2.6)

This equation contains no approximations. We want to introduce some kind of
approximation which would be valid at long times.

We are forced to introduce a somewhat less rigorous argument than desirable
in order to present the essence of the method. Since we believe relaxation within
each well is rather rapid, we would expect the distribution in each well (in a time
of order of magnitude which is finite as D — 0) to approach the same shape as the
stationary distribution, but the relative weights of the two peaks to be different.
This can be formalised by writing

p(x, 1) = p(XIN(D/n,  x <b

9.2.7)
= ps(x)Nc(t)/nc x> b.
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This would be accurate to lowest order in D, except in a region of magnitude /D
around b.
If we substitute these into (9.2.6), we obtain

Kk(x0)N,(t) = D[No(t)/n, — N.(t)/n,]

u(xo)N.(8) = DINo(t)lmo — No)In.] 0-2.8)
with
K(ig) = | )1 — p(x)ldx
. 9.2.9)
u(xe) = [ P01 — w()ldx
and
W) = mt [p)dz  x<b
* (9.2.10)

—n7 [p()dz  x>b.
b

Note that if x is finitely different from a or ¢, then y(x) vanishes exponentially as
D — 0, as follows directly from the explicit form of p,(x). Hence, since x in both
integrals (9.2.9) satisfies this conditiofl over the whole range of integration, we can
set

w(x) =0

and use

K(x0) = | pu(x)" dx
y 9.2.11)
H(xo) = [ p(x)~"dx .

a) Three State Interpretation
Equations (9.2.8) correspond to a process able to be written as a chemical reaction
of the kind

X, = X, = X, (9.2.12)

except that there is no equation for N, the number of X, By noting that
N, + N, =1, we find that

No(t) = nolu(x)No(t) + x(xo)N(1)]/[K(x0) + p(xo)] - (9.2.13)
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This is the same equation as would be obtained by adiabatically eliminating the
variable Ny(7) from (9.2.8) and the further equation for Ny(t)

No(t) = D{N,(1)/[nx(xo)] + No(t)/[nep(xo)]}
— No(1) {[nore(xo)] ™" + [nop(x)]™'} - (9.2.19)

Since
no = py(xo) (¢ — a) = A" exp[—U(x,)/D] (¢ — a) . (9.2.15)

we see that the limit D — 0 corresponds to n, — 0, and hence the rate constant in
(9.2.14) multiplying No(t),becomes exponentially large. Hence, adiabatic elimina-
tion is valid.

This three-state interpretation is essentially the transition state theory of
chemical reactions proposed by Eyring [9.4].

b) Elimination of Intermediate States
Eliminating Ny(¢) from (9.2.8) by adding the two equations, we get

NJ(t) = —Nt) = r,N(t) + r.N(t) (9.2.16)
with
ro=Dln, [ dx p )™ r.= Din, [ dx p(0)", 9.2.17)

where r, and r, are independent of x,. Thus, the precise choice of x, does not
affect the interpeak relaxation.
Since N, + N, = 1, the relaxation time constant, 7., is givenby

! =ra+rc=—_[)__ (9.2.18)

n.n. I dx py(x)~!

c) The Escape Probability Per Unit Time for a particle initially near a to reach x,
is the decay rate of N,(¢) under the condition that an absorbing barrier is at x,.
This means that in (9.2.8) we set Ny(¢) = 0 [but note that p,(x) is defined by (9.1.2)].
Similar reasoning gives us

N,(t) = —DN,(1)/n.x(xo) (9.2.19)

so that the mean first passage time is given by
2, =n,D" [ dx p(x)" . (9.2.20)

This result is essentially that obtained in (5.2.166) by more rigorous reasoning.
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d) Dependence of Relaxation Time on Peak Populations

Equation (9.2.18) looks at first glance like a simple formula relating the relaxation
time to n, and n, = 1 — n,. One might think that all other factors were indepen-
dent of n, and 1, oc n,(1 — n,). However, a more careful evaluation shows this is
not so. If we use the asymptotic evaluation (9.1.13) we find

= 5b T%ﬂ exp [U(b)/ D] (9.2.21)

and similarly, #"can be evaluated asymptotically by taking the contribution from
each peak. We obtain

NV = /IeD {[U"(@)] "2 exp [— U(a)/ D] + [U"(c)]"2 exp [— U(c)/D]} (9.2.22)

and similarly, by definition (9.2.4) of n, and n,,

- Ulc) — U
n.fn. = A/ U"(c)]U"(a) eXp [Lb_ﬂ]' (9.2.23)
After a certain amount of algebra, one can rewrite (9.2.21) as
1, = 2n H(b; a, c)[n,n]'"? (9.2.24)

with H(b; a, c) a function which depends on the height of U(b) compared to the
average of U(a) and U(c): explicitly, .

2U(b) — U(a) — U(c)
2D

H(b; a, ¢)=[| U"(b)| ~V/2U"(a)"""*U"(c)~""*] exp [ ] . (9.2.25)

9.2.2 Example: Reversible Denaturation of Chymotrypsinogen

Chymotrypsinogen is a protein which can be transformed into a denatured form
by applying elevated pressures of up to several thousand atmospheres, as demons-
trated by Hawley [9.5]. Presumably the molecule collapses suddenly if sufficient
pressure is imposed.

A somewhat unrealistic, but simple, model of this process is given by the equa-
tion.

dx = _—(;(i‘—) dt + \/ ”‘TT A1), (9.2.26)

where x is the volume of a molecule, U(x) is the Gibbs Free energy per molecule and
kT/y takes the place of D. Here y is a friction constant, which would arise by an
adiabatic elimination procedure like that used to derive the Smoluchowski equa-
tion in Sect. 6.4. The stationary distribution is then

ps(x) = A exp [—Ux)/kT] (9.2.27)

as required by statistical mechanics.
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The explicit effect of the variation of pressure is included by writing
U(x) = Uy(x) + x p (9.2.28)

where dp is the pressure difference from the state in which n, and n, are equal. The
term xJp changes the relative stability of the two minima and is equivalent to the
work done against the pressure dp. From (9.2.23) this requires Uy(x) to satisfy

~/Ug(a) exp [Uo(@)/kT] = /Uq(c) exp [Us(c)/kT] . (5-2.29)

The maxima and minima of U(x) are slightly different from those of Uy(x). If we
assume that higher derivatives of Uy(x) are negligible, then the maxima and minima
of U(x) are at points where U’(x) = 0 and are given by a + da, b + db, ¢ + Jc,
where

da = —3p|U@) = B.dp l
b= 3p/|Us(B)| = B,dp (9.2.30)
d¢ = —op|Us(c) = B.Jp. )

We thus identify 8, and . as the compressibilities dx/dp of the states a and ¢, which
are negative, as required by stability. The quantity S, is some kind of incompressibi-
lity of the transition state. Since this is unstable, 8, is positive.

The values of U(a), U(b), U(c) of these minima are

U(a + éa) = Uy(a + da) + (a + da)dp
= Uq(a) + adp + }B.(dp)*

(9.2.31)
U(b + db) = Uy(b) + bop + }B,(dp)*
U(c + d¢) = Uy(c) + cdp + }B.(dp)*
and from (9.2.23) we obtain
;'—: - exp[ (" —gp — (ﬂ"z;Tﬂc) (5p)2]. (9.3.32)

This formula is exactly that obtained by thermodynamic reasoning and fits the
data well.

The relaxation time 7, to the stationary distribution has also been measured.
We compute it using (9.2.24, 25). We find that

. atc—2b, ©.233)
r,(«sp)=(nanc>fn«»exp[——w + 2 (B —45.—450)|
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Notice that, in principle, a and c, the volumes of the two states and g, and S., their
compressibilities, are all measurable directly. The transition state data b, U(b) and
B, are left as free parameters to be determined from lifetime measurements. Of
course, the quadratic terms will only be valid for sufficiently small §p and for appli-
cations, it may be necessary to use a more sophisticated method.

In Fig. 9.2, 7(Jp) and n,/n, are plotted for a set of possible values of parameters,
as computed from (9.2.33).

200
11000
100
100
—~ 50 10
2
£ Z
3 'z
=20 1
01
Ao \ Fig. 9.2. Relaxation rate 7,(3p) and
[ ratio of concentrations of natural
F and denatured forms of chymot-
.05_1‘0 30 20 0 o 020 30 40 rypsinogen accgrding to (9.:2.?:;”).
s ) Dashed line omits compressibility
bp leal/em®) $ corrections

Notice that the equilibration time reaches a maximum near the point at which
natural and denatured forms are in equal concentration. Some skewing, however,
can be induced by making the potential asymmetric. Hawley, in fact, notes that
measurements in this region are limited by “instrumental stability and the patience
of the investigator.”

Finally, the curves with zero compressibility are given for comparison. The
difference is so large at the wings that it is clear that the quadratic correction
method is not valid for the 7,(dp) curve. However, the corrections almost cancel for
the n,/n, curve. A realistic treatment in which more variables are included preserves
the qualitative nature of this description, but permits as well the possibility 8, < 0,
which is not possible here, as is shown in [9.9].

9.2.3 Bistability with Birth-Death Master Equations (One Variable)

The qualitative behaviour of bistable systems governed by one-step birth-death
Master equations is almost the same as that for Fokker-Planck equations.
Consider a one step process with transition probabilities #*(x), ~(x) so that
the Master equation can be written as
dP(x)

S =J0+ 1,0 = U6 1) (9.2.34)
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with
J(x,t) =t~ (x)P(x, t) — t*(x—1)P(x—1,1). (9.2.35)

Suppose now that the stationary distribution has maxima at @, ¢ and a minimum
at b, and in a similar way to that in Sect. 9.2.1, define

M(x, 1) =3 P(z, 1) (9.2.36)
N(t) =1 — N(t) = M(b, 1) (9.2.37)

and if x, is a point near 4,
No(t) = P(xo, 1) . (9.2.38)

The corresponding stationary quantities are
b—1
n,=1—n,= P(z2) (9.2.39)
z=0

ny = P,(x,) . (9.2.40)
We now sum (9.2.34) from 0 to x — 1 to obtain

% — Jx, ) (9.2.41)

[since J(O, t) = 0]. We now use the fact that the stationary solution P,(x) is in a
one-step process obtained from the detailed balance equation

t7(x)Py(x) = t*(x—1)Py(x—1) (9.2.42)
to introduce an “integrating factor” for (9.2.41). Namely, define

B(x, t) = P(x, )| P(x) (9.2.43)
then (9.2.41) can be written

dM(x,t)

dt = Ps(X)t"(x)[ﬂ(x, t) — ﬂ(x_], t)] (9244)
so that
d x [ M(z,t)
ar .54, [m] = P(xo, t) — Bla, t)

(9.2.45)
— P(xo, t)_ P(a’ t)

o Ps(xo) Ps(a) )
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Equation (9.2.45) is now in almost precisely the form of (9.2.6) for the corres-
ponding Fokker-Planck process. It depends on the solution being obtained via a
detailed balance method (9.2.42).

We make the same assumptions as Kramers; namely, we assume that only rela-
xation between peaks is now relevant and write

P(x, t) = P,(x)N,(t)/n, x<b

(9.2.46)
= P(x)N(t)/n. x>b
and obtain relaxation equations exactly like those in (9.2.8)
KGN(t) = No(t)fno — No()/ns 9.2.47)
U(x)N(t) = No(t)/ne — N(t)/n. .
where
k(xo) = 3% [P @11 — y(2)]
Frat (9.2.48)
u(xo) = 23_“.“ [P(2)t=@]7'[1 — y(2)]
with
¥
y(z) = n;! iP,(y) z<b
y=s (9.2.49)

= n;! 'f P(y) z>0b.

y=b+1

The only significant difference is that D appears on the right of (9.2.8) but is here
replaced by a factor £=(z)~! in the definitions of x(x,) and u(x,).

All the same approximations can be made, the only difficulty being a precise
reformulation of the D — 0 limit, which must here correspond to a large number
limit, in which all functions change smoothly as x changes by +1. This is just the
limit of the system size expansion, in which a Fokker-Planck description can be
used anyway.

We shall not go into details, but merely mention that exact mean exit times
are obtainable by the method of Sect. 7.4. By adapting the methods of Sect. 5.2.8
to this system one finds the splitting probabilities that the system initially at x,,
reaches points a, ¢ are

= { 3 [P@r@IM/{ 3 [P
z=x0+1 z=a+1 (9'2.50)

me= {3 PG 3 PECEN) -

Thus, for all practical considerations one might just as well model by means of a
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Fokker-Planck description. It is rare that one knows exactly what the underlying
mechanisms are, so that any equation written down can be no more than an
educated guess, for which purpose the simplest is the most appropriate.

9.3 Bistability in Multivariable Systems

There is a wide variety of possibilities when one deals with multivariable systems.
If the system is described by a Master equation, the possible variety of kinds of
transition and state space is so bewilderingly rich, that one can hardly imagine
where to start. However, since we saw in Sect. 9.2.4 that a Master equation descrip-
tion is not very different from a Fokker-Planck description, it seems reasonable to
restrict oneself to these, which, it turns out, are already quite sufficiently compli-
cated.

The heuristic treatments of these problems, as developed mainly by the phy-
sicists Langer, Landauer and Swanson [9.6] are now in the process of being made
rigorous by mathematical treatments by Schuss and Matkowsky [9.7] and others.
The first rigorous treatment was by Ventsel and Freidlin [9.8] which, however,
does not seem to have attracted much attention by applied workers since the rigour
is used only to confirm estimates that have long been guessed, rather than to
give precise asymptotic expansions, as do the more recent treatments.

We will consider here systems described in a space of / dimensions by a Fokker-
Planck equation which is conveniently written in the form

0.p =V -[—v(x)p + eD(x)-Vp] 93.1)

whose stationary solution is called p,(x) and which is assumed to be known in much
of what follows. It can, of course, be estimated asymptotically in the small & limit
by the method of Sect. 6.3.3.

9.3.1 Distribution of Exit Points
We will treat here only a simplified case of (9.3.1) in which D(x) is the identity:
D(x)=1. 9.3.2)

This does conceal features which can arise from strongly varying D but mostly, the
results are not greatly changed.

We suppose that the system is confined to a region R with boundary S, and that
the velocity field v(x) points inwards to a stationary point a. The problem is the
asymptotic estimate of the distribution of points & on § at which the point escapes
from R. We use (5.4.49) for n(b, x) (the distribution of escape points on S, starting
from the point x), which in this case takes the form

v(x)-Vn(b, x) + eV*n(b, x) =0 (9.3.3)

with boundary condition
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b, u)=5b—u (WeES). (9.3.4)

An asymptotic solution, valid for ¢ — 0, is constructed, following the method of
Matkowsky and Schuss [9.7].

a) Solution Near x = » and in the Interior of R
Firstly one constructs a solution valid inside R. For ¢ = 0 we have

v(x)-Vn(b, x) =0 (9.3.5)

which implies that n(b, x) is constant along the flow lines of v(x), since it simply
states that the derivative of n(d, x) along these lines is zero. Since we assume all the
flow lines pass through a, we have

(b, x) = (b, a) (9.3.6)

for any x inside. However, the argument is flawed by the fact that v(a) = 0 and
hence (9.3.5) is no longer an appropriate approximation.

We consider, therefore, the solution of (9.3.3) within a distance of order /¢
of the origin. To assist in this, we introduce new coordinates (z, y,) which are
chosen so that z measures the distance from a, while the y, are a set of / — 1 tangen-
tial variables measuring the orientation around a.

More precisely, choose z(x) and y,(x) so that

v(x)-Vz(x) = —z(x)
u(x)-Vy,(x) =0 9.3.7)
z(a) =0.
The negative sign in the first of these equations takes account of the fact that a is
assumed stable, so that v(x) points towards a. Thus, z(x) increases as x travels

further from a.
Thus, we find, for any function f,

Vf= VZ(x)gé + 2 Vy.(x) aay{ 9.3.8)
and hence,

v(x)-Vn = —z%’z—t (9.3.9)
and

2 2
Pn = 72x) P2(e) 55 + 2 £ p2(e) Py, (x) 5’37’;

0*n ) on , on
a7 2(x) 5, + 2Py 55 (9.3.10)

+ Z Vy.(x)-7y(x) 3y
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We now evaluate n asymptotically by changing to the scaled (or stretched) variable
¢ defined by

z=¢(¢ . 9.3.11)
Substituting (9.3.8-11) into (9.3.3) we find that, to lowest order in ¢,

on ’n
— a—E-i-Ha-é—z—O

where (9.3.12)
H = pz(a)-Vz(a) .

We can now solve this equation getting

7(b, x) = C, " d& exp (P[2H) + (b, a) . (9.3.13)

0

Because H is positive, we can only match this solution for z with the constancy of
n(b, x) along flow lines for x # a if C; = 0. Hence, for all x on the interior of R,

(b, x) = n(b, a) . (9.3.14)

[Notice that if v(x) points the other way, i.e., is unstable, we omit the negative sign
in (9.3.9) and find that n(d, x) is given by (9.3.3) with H — —H, and hence in a
distance of order /¢ of a, n(b, x) changes its value].

b) Solution Near the Boundary §
We consider, with an eye to later applications, the solution of the slightly more
general equation

u(x)-Pf(x) + er’f(x) = 0
with (9.3.15)

S =gmw) (mes)

of which the boundary value problem (9.3.4) is a particular case. Two situations
arise.

i) v-v(x) + O on S or anywhere in R except x = a which is stable: clearly, in any
asymptotic method, the boundary condition (9.3.15) is not compatible with a
constant solution. Hence, there must be rapid changes at the boundary.

Near a point # on § we can write

v(u)-Vf(x) + er?*f(x) =0. (9.3.16)

Near § it is most convenient to introduce v(u), the normal (pointing out) at u to S,
and to define a variable p by
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x =u— gpv(u) (9.3.17)

and other variables y, parallel to S.
Then to lowest order in ¢, (9.3.16) reduces to (at a point near 4 on §)

[v- v(u)] +H(u) f (9.3.18)

with H(u) = v2 = 1.
The solution is then

fx) = g(w) + C,(w) {1 — exp [—v-v(®)p]} . (9:3.19
As p — oo, we approach a finite distance into the interior of R and thus

f(x) —gw) + C,(w) = C, (9.3.20)
from the analysis in (a), so .

Ci(w)=C, — g(u). (9.3.22)
One must now fix C,, which is the principal quantity actually sought.

This can be done by means of Green’s theorem. For let p,(x) be the usual

stationary solution of the forward Fokker-Planck equation. We know it can be
written

p.(x) = exp |— L[§(x) + O) 9.3.23)

as has been shown in Sect. 6.3.3. We take (9.3.16), multiply by p,(x) and integrate
over R. Using the fact that p,(x) satisfies the forward Fokker-Planck equation, this
can be reduced to a surface integral

0 = [ dx p,(x)[v(x)-Ff(x) + er*f(x)] (9.3.24)

= J; dS {p,(x)v-v(x)f(x) + elp(x)v-Vf(x) — fx)v-Pp(x)]} . (9:3.25)

Noting that, to lowest order in &.

v-Pf(x) = — lai — —y-b()[C, — g(®)] (9.3.26)
and
V-Ppx) = — V-7 g(x) exp [~ (el , 93.27)

we deduce that



i dS e $W/e [2y.v(x) + V-V d(x)]g(x)

Co= [ dS e @7 v.v(x) : (9.3.28)
R

Recalling that for this problem, g(u) = 5,(¥ — b), we find that, if x is well in the
interior of R,

o487 [29.0(b) + v-V4(b)]
[dSetwev.p(x) - (9.3.29)

n(x,b) = C, =

We see here that the exit distribution is essentially exp [—@(d)/e], i.e., approximately
the stationary distribution. If the Fokker-Planck equation has a potential solution,
then

v(b) = —V(b) (9.3.30)
and
n(x, b) = e $®/e y.v(b)/[ [ dS e $®/ v-v(x)]

and we simply have a kind of average flow result.

ii) v-v(x) = 0 on S: this problem is more directly related to bistability, since
midway between two stable points a and ¢, a curve v-v(x) = 0 which separates the
two regions and is known as a separatrix is expected.

The method is much the same except that near u on S, we expect

v0(x) ~ v (x — u)(u) . (9.3.31)

where k(u) is a coefficient which depends on v(x) and is assumed to be nonzero.
The situation is now like that at x = a and it is appropriate to substitute

x=u—./¢ pv(u) (9.3.32)

and to lowest order in ¢ (9.3.16) reduces to (at a point near # on )

() pg{) n g%fz —0 (9.3.33)
so that
f®) = &) + C: [ dp exp [~ f(w)p’] (9.3.34)

and letting p — oo, we find
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2
Ci =[Co — gw)] ‘/ % . (9.3.35)

The result for n(x, ) is now completed as before: one gets

e"“‘”"[(l + \/ZC—;——(I’)) v-u(b) + V-V¢(b)]

[ dS e/ \/@ v-u(x)

n(x, b) = (9.3.36)

9.3.2 Asymptotic Analysis of Mean Exit Time

From our experience in one-dimensional systems, we expect the mean exit time
from a point within R to be of order exp(K/e); for some K > 0, as ¢ — 0. We
therefore define

7(x) = exp (—K/e)T(x) (9.3.37)

where T(x) is the mean escape time from R starting at x and 7(x) satisfies (from
Sect. 5.4)

v(x)-Vi(x) + eVt(x) = —e™X/¢

9.3.38
w)=0 wuecs. ¥ ( )

If this scaling is correct, then any expansion of 7(x) in powers of ¢ will not see the
exponential, so the equation to lowest order in ¢ will be essentially (9.3.16).

As in that case, we show that 7(x) is essentially constant in the interior of R and
can be written as [in the case v-v(x) # 0 on S}

7(x) ~ Co{l — exp [—v-v(u)p]} (9.3.39)

near S.
We multiply (9.3.38) by p,(x) = exp[—d(x)/e] and use Green’s theorem to
obtain [in much the same way as (9.3.25) but with 7(x) = 0 on ]

—e ke I dx e $X/e — _I ds e—$x/e [Cov-v(x)] , (9.3.40)
R s

ie.,

Co — J'dx e—[l(M(x)]/s/J' ds e—#x)/s v-v(x) . (9341)
R S

By hypothesis, C, does not change exponentially like exp (A4/¢). In the numerator
of (9.3.41) the main contribution comes from the minimum of g(x) which occurs at
the point a, whereas in the denominator, it occurs at the point on § where ¢(x) is a
minimum, which we shall call x,. Thus, the ratio behaves like
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exp {[#(@) — g(xo) — K]/e} .
and hence for C, to be asymptotically constant,
K = d(a) — ¢(x,) (9.3.42)

and, for x well into the interior of R, we have

7(x) = [ dx ef®/[[ dS [e"#@ y.v(x)] . (9.3.43)

In the case where v-v(x) = 0 on all of S, we now have

(%) ~ C, fdp exp [— bic(u)p?] (9.3.44)

and hence in the interior,

T
7(x) ~ C, \/EE—(") . (9.3.45)

The analysis proceeds similarly and we find, for x well in the interior of R,

~ [T $(x)/e —$)/e 3.
7(x) \/ 2;c(u),J; dx e$®/%| 3[ dSe (9.3.46)

9.3.3 Kramers’ Method in Several Dimensions

The generalisation of Kramers’ method is relatively straightforward. We consider
a completely general Fokker-Planck equation in / dimensions [we use P(x) for the
probability density for notational ease]

0,P =V .[—v(x)P + eD(x)-V P] (9.3.47)

whose stationary solution is to be called P (x) and can only be exhibited explicitly
if (9.3.47) satisfies potential conditions. We assume that P,(x) has two well-defined
maxima at a and ¢ and well-defined saddlepoint at b (Fig. 9.3). We assume that the
value at the saddlepoint is very much smaller than the values at @ and ¢. We intro-
duce a family of (/ — 1) dimensional planes S(w), where w is a parameter which
labels the planes. We choose S(a) to pass through a, S(b) through b and S(c)
through e. The planes S(w) are assumed to be oriented in such a way that P(x)
has a unique maximum when restricted to any one of them. We define, similarly
to Sect. 9.2.1

M[S(w)] = | dx P(x), (9.3.48)

L(w)
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Fig. 9.3. Contours of the stationary distribu-
tion function P,(x). The plane S(w) is oriented
so that P,(x) has a unique maximum there,
and the curve x = u(w) (dashed line) is the
locus of these maxima

\

where L(w) is the region of space to the left of the plane S(w); then

MISw)] =sj dS-[—v(x)P + eD(x)-VP]. (9.3.49)

(w)

Current in stationary state is defined by
J, = —v(x)P, + eD(x)-VP,. (9.3.50)

Assumption I: we exclude cases in A)vhich finite currents J, occur where P, is very
small. Because of ¥ -J, = 0, we can write

J, = —¢V -(AP,) (9.3.51)

where 4 is an antisymmetric tensor. We require that A be of the some order of
magnitude as D(x), or smaller.
Relaxation equations are derived in two stages. Define a quantity f(x) by

B(x) = P(x, t)/P,(x) = N,(t)/n, (x near a) (9.3.52)
= N(t)/|n, (x near c) .

This is the assumption that all relaxation within peaks has ceased. Substitute now
in (9.3.49), integrate by parts discarding terms at infinity and obtain

M[S(W)] = ¢ [ dS-[D(x)-FB] P(x) (9.3.53)
)
with
D(x) = D(x) + A(x) . (9.3.59)

Assumption II: P,(x) is sharply singly peaked on S(w) so we may make the approxi-
mate evaluation
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M[SW)] = {eln(w)- D (x)-V Bl + 3(W)} sl(f )dS P(x)|, (93.55)

where d(w) is expected to be very much smaller than the term in square brackets.
Here u(w) is the position at which P (x) has its maximum value when restricted to
S(w), and a(w) is the normal to S(w).

Assumption III: the direction of n(w) can be chosen so that & T(x)-n(w) is parallel
to the tangent at w to the curve x = u(w) — without violating the other assump-
tions. Hence,

D u(w)]-n(w) = d(w)o, u(w) . (9.3.56)

Defining now
p(w) = ISI( )dS P(x)|, (9.3.57)

which is (up to a slowly varying factor) the probability density for the particle to
be on the plane S(w) and is expected to have a two-peaked shape with maxima at
w = aand w = ¢ and a minimum at w = b.

Assumption IV: these are assumed to be sharp maxima and minima. Neglecting
d(w), making the choice (9.3.56) and noting

d.u(w)-V Blu(w)] = 3. plu(w)], (9.3.58)
we find
LT o (SO0 = Bowe) — BG@) 9.3.59)

Using the sharp peaked nature of p(w)~!, (9.3.59) can now be approximated by
taking the value at the peak, using (9.3.52) and

N(a, t) = M[S(d), t] (9.3.60)

as well as defining

K(we) = | [p(w)]"dw 9.3.61)
uwe) = [ [p(w)]-dw , (9.3.62)

to obtain the relaxation equations
K(WON(1) = ed(wo)[No(t)/no — Na(t)/n.] (9.3.63)

BWN(1) = ed(wo[No(t)/no — N(1)/n.] . (9.3.64)
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These are of exactly the same form as those in the one-variable case and all the
same interpretations can be made.

9.3.4 Example:Brownian Motion in a Double Potential
We consider Brownian motion in velocity and position as outlined in Sect. 5.3.6.
Thus, we consider the Fokker-Planck equation

0P(x,p,t) oP 0%P1

wpl)_ 0Py o y[ap P+ 9.3.65)
In the notation of the previous section we have
x=(x, p)
v(x) = (p, —U'(x) — )
e=1
D 0 O
D) =\ y (9.3.66)
P(x) = A, exp [—4p* — U(x)]
Ny = @2n)712H,
M= { ] dxexp[-UX)]} ™
§
Hence, we can write
0 —1
v(x) = [l } -p(log P,) (9.3.67)
4
and the current in the stationary state is
0o —1
J,=—vP,+ D-yP,= —p- {L 0] P,] (9.3.68)
so that 4 exists, and
= - 1] 9.3.69)
=P ) o
Thus, Assumption I is satisfied.
The plane S(w) can be written in the form
Ax+p=w. (9.3.70)

Assumption II requires us to maximise P,(x) on this plane, i.e., to maximise
— }p*—U(x) on this plane. Using standard methods, we find that maxima must lie
along the curve u(w) given by
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x(w) x(w)
_ _ 9.3.71
“) &J h—uw} ©-370)

where x(w) satisfies
U'Tx(w)] + 22x(w) — dw =0 ; (9.3.72)

whether P,(X) is sharply peaked depends on the nature of U(x).

We now implement Assumption III.

The parameter A is a function of w on the particular set of planes which satisfy
(9.3.56). The tangent to #(w) is parallel to

dx dx  dl
“r I S L] 9.3.73
[dw’l A xdw] (9-3.73)

and differentiating (9.3.72) we have

g;’: = (U" + 2% [;. - g-f-v Qix — w)] . (9.3.74)

The normal to (9.3.70) is parallel to (4, 1). Hence,

1
FTn=( 2| O l} H =+ /12)‘”’[ J (4.3.75)
—1 p/l1 y—4

and this is parallel to (9.3.73) if

dx dx da
%/1=[1—a%—x%]/(y—1). (9.3.76)

We can now solve (9.3.74, 76) simultaneously, to get

U —yA+ 2 ] (9.3.77)

dx
[x(U” T 27 — (2Ax — w)

=

X
2

1
vy

di 1[ Ur— Jy + 22 ]

ar _ 1 (9.3.78)
dv ™y Lx(U" + 2% — (2Ax — w)

The saddle point is at (x, p) = (0, 0) and thus w = 0 & x = 0. Using this in
(9.3.77) we see that we must have

XxX=wly asw=0. (9.3.79)
Near x = 0, we write approximately
Ulx] = —4U,x? (9.3.80)

and substituting (9.3.79, 80) in (9.3.72), we see that
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A — 9l 4+ U"(0)=0 (9.3.81)

which determines

M0) = % + \/%z + U,. 9.3.82)

We now see that (9.3.78) tells us that dAi/dw = 0 when w = 0. Thus, A will not
change significantly from (9.3.82) around the saddle point, and we shall from now
on approximate 1 by (9.3.82).

Only one of the roots is acceptable and physically, this should be A — oo in the
high friction limit which would give Kramers’ result and requires the positive
sign. The other root corresponds to taking a plane such that we get a minimum of
P,(x) on it.

We now integrate (9.3.57) and determine d(w). Notice that d(w) must be defined
with n(w) a unit vector. Direct substitution in (9.3.75) and using (9.3.79)

(1 + )2 = 2 (v = 0)d(0) = - d(O) 9.3.83)
so that

d0) = y(1 + 2»)7"2. . (9.3.84)
Further,

p(w) = [ |dS P(x)| =S! )«/ dx? + dp* P(x, p)

Sw)

[+ e e w—p (9.3.85)
=./V;—l—.[dpexp[——2-— U( 7 )}
An exact evaluation depends on the choice of U(x). Approximately, we use
U(x) = U, — $U,x* (9.3.86)
and evaluate the result as a Gaussian: we get
p(w) = (l—+;—2)l—liuf€ e”Yexp [mz—l]’f—zgz—)} (9.3.87)
and thus
¢ _ _ Ay elo
w(O) = [ p0)dw =3 A3 VT~ HO. (9.3.88)

Thus, from (9.2.19) adapted to the many dimensional theory, we have for the
mean first passage time from one well to the point x = 0,
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p
7 = K(0)d(0) = 5 %o ! %’.‘ (9.3.89)
2

I.€.,

1 v 2
=g (5 v et 2. 9.3.90)

Comparisons with Other Results

a) Exact One-Dimensional Mean First Passage Time (Smoluchowski’s Equation)
One reduces Kramers equation in the large friction limit to the Smoluchowski
equation for

P(x,t) = [ dv P(x, v, 1), (9.3.91)
ie.,

0P(x,t) 147, oP

—a-t-———7a—x[U(x)P+a—x] (9.3.92)

and the exact result for the mean first passage time from x = a to x = 0 for this
approximate equation is

=7 [deexp[U®)] | dzexp[—U(@)]. (9.3.93)

This result can be evaluated numerically.

b) Kramers’ Result

This is obtained by applying our method to the one-dimensional Smoluchowski
equation (9.3.92) and making Gaussian approximations to all integrals. The
result is

6, = lyeYo #it J f]_" (9.3.94)
2

which differs from (9.3.90) for 7, by the replacement 1 — y, which is clearly valid in
a large y limit. In this limit,

7o = (1 4+ Uy )r,. (9.3.95)

¢) Corrected Smoluchowski
A more accurate equation than the Smoluchowski equation (9.3.1) is the corrected
Smoluchowski equation (6.4.108);

0P 1 9

Lol yvrves+ ). 93.99)

ax
One now calculates the exact mean first passage time for this equation using
standard theory; it is
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0 x
3=y [dx[l + y2U"(x)] exp[U(x)] [ dz exp [—U(2)] . (9.3.97)

Note however, that the principal contribution to the x integral comes from near
x = 0 so that the small correction term y~2U"(x) should be sufficiently accurately
evaluated by setting

U'(x) = U"(0) = —-U, (9.3.98)
in (9.3.97). We then find the corrected Smoluchowski result,

3= 01 —9y2U) 'ty = + y2Uyr, . (9.3.99)
Notice that in this limit,

L_%
2= (9.3.100)

which means that in the limit that all integrals may be evaluated as sharply peaked
Gaussians, our result is in agreement with the corrected Smoluchowski.

d) Simulations
By computer simulation of the equivalent stochastic differential equations

dx = pdt (9.3.101)
3
dp = —[yp + U'(x)]dt + /2y dW(1), (9.3.102)
we can estimate the mean first passage time to the plane S,, i.e., to the line

p= —Ax. (9.3.103)

The results have to be computed for a given set of potentials. In order to assess the
effect of the sharpness of-peaking, we consider different temperatures T, i.e., we
consider

dx = pdt (9.3.104)
dp = —[yp + U'(x)ldt + +/2yT dW(1) . (9.3.105)

By the substitutions

T2
P ”TTW (9.3.106)
X —x ,
we obtain
dx =pdt
(9.3.107)

dp = —[yp + V'(x, T)] + /2y dW(t)
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where
V(ix, T) = U(xT"?). (9.3.108)

The simulations were performed with
U(x) = L(x* — 1)? (9.3.109)

and the results are shown in Fig. 9.4. They separate naturally into two sets: curved,
or straight lines. The best answer is the corrected Smoluchowski which agrees with
the simulations at all temperatures, and at low temperatures, agrees with our
method. Thus, we confirm the validity of the method in the region of validity
expected, since low temperature corresponds to sharply peaked distributions.

1000 E
F - One dimensional E
500+ ---Kramers F
[ — Our theory r
i Mean of 300 I
- computer trials F
—— Corrected Smoluchowski 1
100} E )
sol L
i 1f /
A
10 :,'('."
:(7)_: o o
g o [
L . L
— 7 1 N
= LS L
@ I'//
o
P g T=10 T=02
g 1h S e N T L ! [ S ) 1
Q C E I
= [ L
(g 500 r r /
ha - -
c /
S L L
P}
=
100
sof
L
q//
/{{‘l -
10 E
sf L
i - i - Fig. 9.4. Comparison of vari-
L ““T' 0'115 L . T= ?‘1 ous estimates of the mean exit
R 50 20 1 2 5 10 20 time from the double well
X potential of Sect. 9.3.4
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Notice also that the choice of the plane S, as the separatrix is appropriate on
another ground. For, near to x = 0, p = 0, we can write

dx = p dt (9.3.110)
dp = (—yp + Ux)dt + /2yT dW(1) . 9.3.111)

The condition that the deterministic part of (dx, dp), namely, (p, —yp + U,x) is in
the direction connecting the point (x, p) to the origin is

p x
== 9.3.112
—ywp+Ux p ( )
Putting p = — A x, we find
AP—ly—U,=0 (9.3.113)

which is the same as (9.3.81) near x = 0. The two solutions correspond to the
deterministic motion pointing towards the origin (4 ve root) or pointing away from
the origin (—ve root).

Thus, when the particle is on the separatrix, in the next time interval dt, only
the random term dW(t) will move it off this separatrix and it will move it right or
left with equal probability, i.e., this means that the splitting probability, to left
or right, should be 1:1 on this plane.

This separatrix definition also agrees with that of Sects. 9.1, 2 where the
v(x) should be perpendicular to the formal to S.



10. Quantum Mechanical Markov Processes

Quantum mechanics, since the very early times in the 1920’s, has been recognised
as a description of the world which contains an essentially statistical aspect. Hence,
all quantum mechanics must be regarded as being some kind of stochastic process.
However, what is essentially unique to quantum mechanics is the description in
terms of complex probability amplitudes, the square of whose modulus gives the
actual probability of occurrence of an event.

The formulation of a proper quantum mechanical probability theory, or of
quantum mechanics in terms of appropriately defined stochastic processes in this
generalised probability theory, is not the aim of this chapter. What is of interest is
the introduction of the reader to the rather fascinating world which straddles the
boundaries of quantum and classical probability theory. This world is the realm of
quantum optics and quantum electronics, where there are statistical aspects arising
from the intrinsic quantum nature of the system, as well as fluctuations arising
from thermal effects. We shall show how the quantum mechanics of optical systems
can be related closely to Markov jump processes in a suitably generalised form,
which can themselves very frequently be related by means of what are known as
P-representations or otherwise, as phase-space methods, to diffusion processes in the
complex plane. These diffusion processes can describe quasiprobabilities which
may be negative or complex, or they may define genuine positive probabilities. The
situation is very similar to that of the Poisson representation of Sect. 7.7 which is
itself, in fact, a restricted form of P-representation.

We will formulate this chapter as follows. We first outline the quantum
mechanics of the harmonic oscillator and introduce the concept of coherent states,
which are central to the task. We then define a quantum Markov process and
show how generalised Master equations can be derived for these, in a manner
similar to that of the adiabatic elimination methods of Chap. 6. From these
generalised Master equations we can sometimes develop ordinary birth-death
Master equations, and sometimes, by using P-representations, we can develop
Fokker-Planck equations. Both methods allow us to apply all the apparatus of
classical stochastic processes to these quantum mechanical systems.

10.1 Quantum Mechanics of the Harmonic Oscillator

We describe the Harmonic oscillator in terms of creation and destruction operators
a* and a which satisfy the commutation relations

[a, a*] = aa* — a*a =1 (10.1.1)
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First passage time
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of particle in a double well 351
Flow
and collisions 339 - 341
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Fluctuating force 6, 15
Fluctuation dissipation theorem 162
Flux, phenomenological 162
Fokker-Planck equation (FPE) 5, 8,
117-176
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boundary conditions 118—125
chemical 266
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relation to Poisson representation 413
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for birth-death master equation 273 —274
for Poisson distribution 38
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382384, 410

408 - 419
415-419

Haken’s model 223

Harmonic oscillator
defined 374
driven by fluctuating field 398
driven damped 397 — 398
driven; in P-representation 384
interaction with external field 375
quantum master equation 395 — 399
quantum mechanics of 373

Heat bath; defined 388

Hermite polynomials 134
in adiabatic elimination 202

Homogeneous Markov process 60
defined 56

Independence 7, 27

Independent random variables 27
and characteristic function 32

Interaction picture 394
and driven atom 399

Ito stochastic integral; defined 84
properties of 88 —92

Ito’s formula; derivation of 95
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Joint probability 24
Jump process 52
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in birth-death master equation 266
in Boltzmann master equation 337, 340
Kurtz’s theorem 254
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Laplace transform and adiabatic elimination
200
Laser light scattering 7
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Limit of sequence of random variables
39
Limit
almost certain 40
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in probability 41
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stochastic 40
Lindeberg condition 37, 46
Linear SDE
multivariable 113
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Liouville equation 53
quantum 382
Liouville operators; defined 391
Local and global descriptions of chemical
reaction, connection between 328 —331
Local and global fluctuations 320

Markov assumption 13, 43
Markov postulate 5, 10
Markov process
autocorrelation for 64 —66
continuous; defined 46
defined 43
homogeneous; defined 56
quantum mechanical 373
stationary; defined 56
Master equation 51, 235301

approximation by Fokker-Planck equation

246 - 257

many-variable 262 - 277

many-variable; Kramers-Moyal expansion
for 266

mean first passage times 259 —262
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phase space 331-341
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Master equation (cont.)
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Mean first passage time
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integral 84
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Microscopic reversibility 159
Moment 30
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Multivariate master equation 303
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Nonanticipating function; defined 86
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Nyquist’s theorem 18 —20
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Ornstein-Uhlenbeck process 74 —77
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eigenfunctions 134
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in small noise expansion of SDE 181
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time correlation function 76
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Ornstein-Uhlenbeck process (SDE) 106 — 107
multivariate 109-111
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complex; defined 410
existence theorems for 411-415
FPE from 396, 415
generalised 408 —419
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Phase space master equation 331 —341
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Phenomenological flux 162
Phenomenological force 161
Poisson distribution 13, 14, 38 -39
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diffusion system 316-318
Poisson process 13, 72-175
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complex; defined 282
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Positive P-representation
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FPE from 416-—418
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Potential conditions
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418-419
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Potential solution of one-variable FPE 124
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Probability current; defined 119
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Projection operator in adiabatic
elimination 198
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388 -394
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Quantum master equation
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derivation of 390-394
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373
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Random telegraph process
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Random variable 24
Gaussian 36

Random variables
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approximation by FPE 247

Rayleigh process 144, 147
eigenfunctions 135

Reaction diffusion chemical equation 305

Reaction diffusion master equation; defined
313

Reaction diffusion system 303
fluctuating partial differential equations

313

in Poisson representation 314

Reaction diffusion systems, divergence
problems 327

Reflecting boundary condition for backward
FPE 129

Regression theorem 65
quantum 404 — 405

Relaxation time, dependence on peak
populations 352
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Sample path, continuous 5, 45-47

Scaling assumption in approximation of
master equation 246

Schrodinger’s equation 374

SDE see Stochastic differential equation

Separatrix 361, 372

Set of events 21

Sets of probability zero 29
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Slaving principle 197
Small noise expansion
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Smoluchowski equation 197
and escape problem 369
boundary conditions 205
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defined 197, 203
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345
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in Boltzmann master equation 337, 340
in reaction diffusion master equation
313
of master equation 250 - 257
Third-order noise 295
defined 299 — 300
Three-state interpretation of bistable system
350
Time correlation function, see Autocorrelation
function
Time correlation functions
and P-representation 405 — 408
and quantum harmonic oscillator 405 — 408
for two-level atom 408
in quantum Markov processes 402 — 408
Time reversal invariance 150
Transition probability 10
Transition state theory of chemical reactions
351
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reaction 294 —299
Two-level atom
driven 399 — 402
time correlations 408

Unimolecular reactions in Poisson
representation 279
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Variational principle for eigenfunctions of FPE
168
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spatio-temporal structures. Psychology deals with characteristic features of human behavior ranging
from simple pattern recognition tasks to complex patterns of social behavior. Examples from sociology
include the formation of public opinion and cooperation or competition between social groups.

In recent decades, it has become increasingly evident that all these seemingly quite different kinds
of structure formation have a number ofimportant features in common. The task of studying analogies
aswellas differences between structure formation in these different fields has proved to be an ambitious
but highly rewarding endeavor. The Springer Series in Synergetics provides aforum for interdisciplinary
research and discussions on this fascinating new scientific challenge. It deals with both experimental and
theoretical aspects. The scientific community and the interested layman are becoming ever more
conscious of concepts such as self-organization, instabilities, deterministic chaos, nonlinearity, dynamical
systems, stochastic processes, and complexity. All of these concepts are facets of a field that tackles
complex systems, namely synergetics. Students, research workers, university teachers, and interested
laymen can find the details and latest developments in the Springer Series in Synergetics, which
publishes textbooks, monographs and, occasionally, proceedings. As witnessed by the previously
published volumes, this series has always been at the forefront of modern research in the above
mentioned fields. It includes textbooks ogall aspects of this rapidly growing field, books which provide
a sound basis for the study of complex systems.
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